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Abstract16

Mineral phase transformations significantly alter the bulk density and elastic properties17

of mantle rocks and consequently have profound effects on mantle dynamics and seis-18

mic wave propagation. These changes in the physical properties of mantle rocks result19

from evolution in the equilibrium mineralogical composition, which can be predicted by20

the minimization of the Gibbs Free Energy with respect to pressure (P), temperature21

(T), and chemical composition (X). Thus, numerical models that simulate mantle con-22

vection and/or probe the elastic structure of the Earth’s mantle must account for vary-23

ing mineralogical compositions to be self-consistent. Yet coupling Gibbs Free Energy min-24

imization (GFEM) approaches with numerical geodynamic models is currently intractable25

for high-resolution simulations because execution speeds of widely-used GFEM programs26

(100–102 ms) are impractical in many cases. As an alternative, this study introduces ma-27

chine learning models (RocMLMs) that have been trained to predict thermodynamically28

self-consistent rock properties at arbitrary PTX conditions between 1–28 GPa, 773–227329

K, and mantle compositions ranging from fertile (lherzolitic) to refractory (harzburgitic)30

end-members defined with a large dataset of published mantle compositions. RocMLMs31

are 101–103 times faster than GFEM calculations or GFEM-based look-up table approaches32

with equivalent accuracy. Depth profiles of RocMLMs predictions are nearly indistin-33

guishable from reference models PREM and STW105, demonstrating good agreement34

between thermodynamic-based predictions of density, Vp, and Vs and geophysical ob-35

servations. RocMLMs are therefore capable, for the first time, of emulating dynamic evo-36

lution of density, Vp, and Vs in high-resolution numerical geodynamic models.37

Plain language summary38

The mineralogical makeup of rocks within Earth’s mantle largely determines how the39

mantle flows over geologic time, and how it responds to seismic waves triggered by earth-40

quakes, because mineral assemblages control important rock properties such as density41

and stiffness (elasticity). The mineralogy of mantle rocks is not constant, however. It42

changes depending on three factors: pressure, temperature, and the chemical composi-43

tion of the rock. Thus, it is important for computer simulations of mantle convection to44

account for the evolution of rock mineralogy. Computer programs that can predict rock45

properties based on thermodynamic calculations are available, but are generally too slow46

to be used in high-resolution simulations. As an alternative approach, this study intro-47
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duces machine learning models (RocMLMs) that have “learned” how to predict rock prop-48

erties (density and elasticity) by “training” on a large dataset of thermodynamic calcu-49

lations. We demonstrate that RocMLMs can then predict rock properties up to 101–10350

times faster than state-of-the-art methods. We tested RocMLM predictions against ref-51

erence mantle models based on observations of seismic waves and found good agreement.52

RocMLMs are therefore capable of fast and highly-accurate predictions of changes in rock53

properties and can be implemented in high-resolution computer simulations of mantle54

convection.55

1 Introduction56

The dominant mineral phases in Earth’s mantle are olivine, pyroxene, garnet, wad-57

sleyite, ringwoodite, bridgmanite, ferropericlase, calcium silicate perovskite, and MgSiO358

post-perovskite (e.g., Stixrude and Lithgow-Bertelloni, 2012). Mantle mineralogy evolves59

with depth by a series of relatively discontinuous phase transformations that define sharp60

transitions in the physical properties of mantle rocks (Ringwood, 1991). The most im-61

portant phase transformations occur at depths between 410 km and 670 km beneath Earth’s62

surface, defining the transition from the upper to the lower mantle (Equation (1)). This63

mantle transition zone (MTZ) is characterized by sharp variations in density and elas-64

tic properties that strongly impact mantle convection (Christensen, 1995; Fukao et al.,65

2001; Jenkins et al., 2016; Karato et al., 2001; Kuritani et al., 2019; Nakagawa and Buf-66

fett, 2005; Ringwood, 1991; Schubert et al., 1975; Tackley et al., 1994; Wang et al., 2015),67

and the propagation of teleseismic waves (Dziewoński and Anderson, 1981; Ita and Stixrude,68

1992; Ringwood, 1991). The MTZ is therefore an essential feature for modeling mantle69

structure and dynamics. With respect to a simple FeO-MgO-SiO2 chemical system, the70

most important MTZ reactions can be written as:71

olivine
410 km−−−−→ wadsleyite → ringwoodite

670 km−−−−→ bridgmanite + ferropericlase

(Mg,Fe)2SiO4 → (Mg,Fe)2SiO4 → (Mg,Fe)2SiO4 → (Mg,Fe)SiO3 + (Mg,Fe)O (1)

These phase changes (e.g., Equation (1)) are often parameterized in numerical geo-72

dynamic simulations with simple pressure-temperature (PT)-dependent reaction bound-73

aries based on high-pressure experiments (e.g., Agrusta et al., 2017; Ballmer et al., 2015;74
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Christensen, 1995; Č́ıžková and Bina, 2013; Kerswell et al., 2021; Liu et al., 1991; Nak-75

agawa and Buffett, 2005; Tackley et al., 1994; Torii and Yoshioka, 2007). Alternatively,76

some numerical geodynamic experiments (e.g., Li et al., 2019; Yang and Faccenda, 2020)77

use Gibbs Free Energy minimization (GFEM) programs (e.g., Connolly, 2009; Riel et al.,78

2022) to precompute Lookup Tables of rock properties, which are subsequently referenced79

to adjust material properties as the numerical experiments evolve. These implementa-80

tions usually consider fixed ideal mantle compositions, such as pyrolite, and/or approx-81

imate phase transitions with simple functions. These approaches neglect the PT depen-82

dency of mineral transitions on natural variations of mantle composition (X) such as vari-83

ations of Fe-Mg and Al-Ca that may be either primordial or result from melt extraction84

or reactions during melt transport. Despite these simplifications, these models have cor-85

roborated that the MTZ is a critical feature impacting subduction dynamics, mantle plume86

dynamics, and water cycling in the deep Earth.87

More self-consistent numerical models of mantle convection would track changes88

in physical properties of mantle rocks by computing GFEM as a function of the evolu-89

tion of PTX conditions. However, this is currently intractable for high-resolution geo-90

dynamic models because GFEM programs remain too slow (≥ 4–228 ms per PTX point)91

to be applied recursively during a geodynamic simulation (see Supporting Information).92

Parallelization of GFEM programs can increase efficiency by scaling the number of par-93

allel processes (Riel et al., 2022), but continuously computing phase relations during geo-94

dynamic simulations would require GFEM efficiency on the order of ≤ 100–10−1 ms to95

be feasible (see Supporting Information), which may be difficult to achieve solely by par-96

allelisation and/or direct improvements to the current GFEM paradigm.97

Here, we propose an alternative approach to predicting rock properties based on98

the use of machine learning models (referred to as RocMLMs) that have been “trained”99

on a multidimensional dataset of precomputed rock properties using classical (k-Neighbors,100

Decision Trees) and deep (Neural Network) regression algorithms. These later regres-101

sion algorithms compress large amounts of thermodynamic information into highly ef-102

ficient nonlinear functions, allowing RocMLMs to infer (predict) rock properties across103

arbitrary PTX conditions faster than any current GFEM algorithm. We demonstrate104

that RocMLMs are thus highly efficient emulators of GFEM programs and are well-suited105

for predicting bulk rock properties in numerical geodynamic models.106
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This article begins by detailing our method for building, training, and evaluating107

RocMLMs. We then demonstrate that RocMLMs can predict densities and seismic ve-108

locities in a dry upper mantle and transition zone up to 101–103 times faster than com-109

monly used GFEM programs with equivalent accuracies. Finally, we compare RocMLM110

predictions with reference models derived from seismological datasets (Dziewoński and111

Anderson, 1981; Kustowski et al., 2008) and discuss the accuracy and performance of112

RocMLMs with respect to their future implementation in numerical geodynamic mod-113

els.114

2 Methods115

The following sections describe the methodologies employed in constructing, train-116

ing, and assessing RocMLMs, with a focus on four primary objectives. First, define the117

size and scope of RocMLM training data to ensure widespread applicability of RocMLMs118

to the upper mantle and transition zone (Section 2.1). Second, define a generalized ap-119

proach for generating RocMLM training data to ensure applicability to any GFEM pro-120

gram (e.g., MAGEMin, Perple X, and others, Section 2.2). Third, train RocMLMs on121

a set of input features that can be routinely computed during geodynamic simulations122

to ensure widespread applicability of RocMLMs to various geodynamic codes (Section123

2.3). Fourth, rank the overall performance of RocMLMs in terms of accuracy and effi-124

ciency (Section 2.4).125

2.1 RocMLM Training Dataset Design126

2.1.1 Pressure-Temperature Conditions127

High-pressure experiments constrain the reaction olivine � wadsleyite between 14.0128

± 1.0 GPa and 1600 ± 400 K with Clapeyron slopes between 2.4x10−3
± 1.4x10−3 GPa/K129

(Akaogi et al., 1989; Katsura and Ito, 1989; Li et al., 2019; Morishima et al., 1994). Like-130

wise, the reaction ringwoodite � bridgmanite + ferropericlase is constrained between131

24.0 ± 1.5 GPa and 1600 ± 400 K with negative Clapeyron slopes between -2.0x10−3
132

± 1.6x10−3 GPa/K (Akaogi et al., 2007; Bina and Helffrich, 1994; Hirose, 2002; Ishii et al.,133

2018; Ito, 1982; Ito et al., 1990; Ito and Katsura, 1989; Ito and Takahashi, 1989; Kat-134

sura et al., 2003; Litasov et al., 2005). We therefore compute RocMLM training data within135

a rectangular PT region bounded between 1–28 GPa and 773–2273 K to encompass ex-136

–5–



manuscript submitted to Geochemistry, Geophysics, Geosystems

pected conditions for the entire upper mantle and MTZ—from approximately 30 km to137

865 km depth (Figure 1).138

Figure 1 shows that our training dataset PT range includes PT conditions that are139

not expected to exist in neither the Earth’s mantle, nor geodynamic simulations (e.g.,140

very cold conditions with thermal gradients ≤ 5 K/km, Cerpa et al., 2022; Maruyama141

et al., 1996; Syracuse et al., 2010). Such a large rectangular PT range might be consid-142

ered impractical with respect to training efficiency (unnecessary amounts of training data)143

and accuracy (outside the bounds of calibrated thermodynamic data) compared to an144

irregular PT range bounded between arbitrary geotherms. However, initial sensitivity145

tests showed comparable RocMLM performance irrespective of the range of PT condi-146

tions used to generate RocMLM training data. Thus, we adopted a regular rectangu-147

lar training dataset design because it is computationally convenient and does not dete-148

riorate RocMLM accuracy.149

Figure 1: PT diagram showing the range of conditions considered for generating
RocMLM training data (hatched region) compared to a range of possible upper man-
tle conditions (inner white region). The dotted black lines are geotherms with arbitrary
mantle potential temperatures of 673 K and 1773 K and a constant adiabatic gradient
of 0.5 K/km, representing hypothetical lower and upper bounds for mantle PT condi-
tions (including hypothetical cold lithospheric slabs). The dashed black line is an average
geotherm for a mid-ocean ridge (1573 K adiabat). Phase boundaries for the 410 km and
670 km discontinuities (colored lines) are from a compilation by Li et al. (2019).
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2.1.2 Bulk Mantle Compositions150

We derived an array of synthetic bulk mantle compositions with the aim of encom-151

passing the widest range of chemical variability in Earth’s mantle. For this, we applied152

a statistical analysis to publicly-available geochemical data from thousands of natural153

peridotite samples. The procedure was as follows.154

Bulk chemical analyses of peridotite samples were downloaded using the Earthchem.org155

Search Portal with a single search criterion: “set sample type > igneous rocks > names156

from Earthchem categories > igneous-plutonic-ultramafic”. The search queried 19791 sam-157

ples with rock type classifications that we did not modify from their original labels. Sam-158

ples lacking analyses for SiO2, MgO, Al2O3, or CaO were excluded from the dataset. All159

samples classified as “unknown”, chromitite, limburgite, wehrlite, undifferentiated peri-160

dotite, dunite, or pyroxenite were also excluded from the dataset to focus on samples that161

are most likely mantellic, that is, residues of partial melting modified (or not) by refer-162

tilization, rather than products of fractional crystallization (Bowen, 1915). The data were163

grouped according to the remaining rock types (lherzolite and harzburgite) and outliers164

were removed from each group using a 1.5 interquartile range threshold applied to each165

chemical component. Cr and Ni measured as minor elements (ppm) were converted to166

Cr2O3 and NiO (wt.%) and all Fe oxides were converted to Fe2O3T. Total oxides were167

then checked against H2O, CO2, and LOI to determine if chemical analyses were per-168

formed before or after ignition. Analyses with total oxides summing to ≤ 97% or ≥ 103%169

were considered erroneous, or otherwise low-quality, and excluded from the dataset. All170

analyses were then normalized to a volatile-free basis before converting Fe2O3T to FeOT.171

After normalization, the final compositional space investigated includes the components172

Na2O-CaO-FeO-MgO-Al2O3-SiO2-TiO2 (NCFMAST system). The final dataset contains173

3111 chemical analyses of classified peridotite samples (Table 1).174

We applied Principal Component Analysis (PCA) to the standardized peridotite175

dataset to reduce its dimensionality from the original 7-oxides space. PCA requires com-176

plete data, so samples were first arranged by decreasing MgO and increasing SiO2 con-177

tent and a k-Neighbors algorithm was applied to impute missing oxide analyses, which178

were mainly the Na2O component (see Table 1 for missing analyses counts). Following179

common practice, a “z-score normalization” was applied to all oxide components before180

running PCA. The first two principal components (PC1 and PC2) explain 78% of the181
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variance of the dataset, which we considered to be sufficient for modeling a broad range182

of peridotitic mantle compositions. PC1 separates samples by their TiO2, Al2O3, MgO,183

CaO, and Na2O contents, while PC2 separates samples by SiO2 and FeO (Figure 2).184

In this PC space, we drew a mixing line connecting the lherzolite and harzburgite185

group centroids (i.e., the median values for PC1 and PC2 for each group). The lherzolite-186

harzburgite mixing line was then extended until reaching the approximate location of187

the most fertile (Al2O3-CaO-TiO2-rich) and most refractory (MgO-rich, SiO2-poor) peri-188

dotite samples, hereafter referred to as Primitive Synthetic Upper Mantle (PSUM) and189

Depleted Synthetic Upper Mantle (DSUM, Figure 2b), respectively. The mixing line ap-190

proximates the widest array of mantle compositions derived from the natural rock record191

and may be interpreted as representing the first order composition variation in response192

to melt extraction (depletion) or addition (refertilization) in the mantle. The mixing line193

therefore provides a basis for sampling synthetic bulk mantle compositions directly from194

PC space, which were then used to generate RocMLM training data.195

Table 1: Summary of the filtered and standardized peridotite dataset from Earth-

chem.org. Columns with an asterisk are in wt.%. Std = standard deviation, IQR = in-

terquartile range.

Oxide MeasuredMissing Min∗ Max∗ Mean∗ Median∗ Std∗ IQR∗

SiO2 3111 0 36.7 52 44.1 44.1 1.16 1.24

TiO2 2835 276 0 0.268 0.051 0.03 0.05 0.068

Al2O3 3111 0 0.023 4.95 1.65 1.31 1.14 1.82

FeOT 3111 0 5.98 15.3 8.05 8.01 0.675 0.569

MgO 3111 0 31.8 50.8 43 43.6 2.96 4.38

CaO 3111 0 0.01 5.2 1.46 1.17 1.04 1.66

Na2O 2008 1103 0 0.525 0.127 0.098 0.11 0.171

2.1.3 Reducing Bulk Mantle Compositions to a Single Fertility Index196

Value197

Training RocMLMs with either 7 oxide components or two PCs as inputs is pos-198

sible. However, our targeted application (e.g., implementing RocMLMs in geodynamic199

codes) discourages the use of the two options because in either case it would require track-200
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ing the oxides in numerical geodynamic codes, which is currently impractical. Thus, we201

aimed to reduce the dimensionality of the training dataset from nine dimensions (7 ox-202

ide components + PT) to three dimensions (1 compositional dimension + PT) by es-203

timating the amount of melt extraction (depletion) that might have produced the syn-204

thetic bulk mantle compositions in the training dataset. Assuming that all synthetic sam-205

ples were derived from a PSUM source, we adopt a simple modal fractional melting model206

(after Shaw, 1970):207

Cs
TiO2

C0
TiO2

= R = (1− F )
1

D0
−1 (2)

where R is the ratio of the TiO2 concentration of the sample to the initial PSUM source208

(Table 2), F is the melt fraction, and D0 = 0.05 is the bulk distribution coefficient for209

TiO2 in peridotite (after Brown and Lesher, 2016). Note that unlike the dataset of nat-210

ural peridotite samples, synthetic samples were drawn directly from PC space and their211

TiO2 concentrations (and other oxide components) change monotonically with PC1 from212

the initial PSUM source (Figure 2b,c). Synthetic samples therefore represent a smooth213

and idealized variability from fertile (PSUM) to depleted (DSUM) mantle compositions214

that captures the average variation in natural peridotite samples.215

A Fertility Index (ξ) is calculated by rearranging Equation (2) for F and subtract-216

ing F from 1:217

ξ = 1− F = R
1

( 1
D0

)−1
(3)

Training RocMLMs on ξ instead of seven oxide components is beneficial for two218

reasons: 1) it greatly increases RocMLM efficiency and 2) unlike oxide components or219

PCs, melt fraction is routinely implemented in numerical geodynamic simulations (e.g.,220

Cerpa et al., 2019; Gerya and Yuen, 2003; Kelley et al., 2010; Li et al., 2019; Sizova et al.,221

2010; Yang and Faccenda, 2020). Likewise, tracking the depletion/fertility of the man-222

tle in geodynamics models with Lagrangian tracers and/or compositional fields is more223

conceivable (Agrusta et al., 2015; Cagnioncle et al., 2007; Gerya and Meilick, 2011; Tack-224

ley and Xie, 2003). Although we chose ξ for RocMLM training, ξ and F represent op-225

posite reference frames for the same time-integrated melting process, and are therefore226
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interchangeable. This approach offers a generalized solution for coupling RocMLMs to227

geodynamic codes.228

Figure 2: PC1-PC2 diagrams showing the standardized geochemical dataset of natu-
ral peridotite samples (a) and a mixing array between hypothetical end-member mantle
compositions Primitive Synthetic Upper Mantle (PSUM) and Depleted Synthetic Up-
per Mantle (DSUM, b). Black arrows in (a) indicate PCA loading vectors. Colored data
points in (b) are the synthetic mantle compositions used to train RocMLMs, which were
sampled independently from the natural peridotite samples (gray data points). The inset
(c) shows how the Fertility Index (ξ) changes nonlinearly with PC1. DMM, PUM, and
PYR are from Table 2.

The melting model in Equation (2) is oversimplified since it assumes: 1) melt is in-229

stantaneously removed from the source region, 2) D0 is constant, and 3) minerals melt230

in the same proportions that they exist in the source rock. It nevertheless provides an231

efficient parameterization of the variation in mantle composition as a function of melt232

extraction and addition. Equation (2) predicts that a Depleted MORB Mantle (DMM)233

composition is produced through a time-integrated 2.2% melt extraction from a Prim-234

itive Upper Mantle (PUM) source (Table 2). This result is consistent with the degree235

of depletion inferred from trace element patterns and mass balance constraints (2-3%236

melt removal from PUM, Workman and Hart, 2005). We therefore consider ξ an ade-237

quate first-order proxy for describing the variations in bulk mantle composition used in238

our RocMLM training dataset. However, given that TiO2 concentrations are strongly239

affected by reactive melt transport (e.g., Le Roux et al., 2007), ξ may only be estimated240

for the average compositional trend as expressed in PC1-PC2 space, rather than on in-241

dividual peridotite samples.242
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Table 2: Hypothetical upper mantle end-member compositions. Columns with an asterisk

are in wt.%. Depleted MORB Mantle (DMM) is from Workman and Hart (2005), Prim-

itive Upper Mantle (PUM) is from Sun and McDonough (1989), and Pyrolite (PYR) is

from Green (1979). Primitive Synthetic Upper Mantle (PSUM) and Depleted Synthetic

Upper Mantle (DSUM), are end-member compositions derived in this study.

Sample SiO∗
2 TiO∗

2 Al2O
∗
3 FeOT∗ MgO∗ CaO∗ Na2O

∗ ξ

DSUM 44.1 0.0012 0.261 7.96 47.4 0.22 0.042 0.764

DMM 44.7 0.13 3.98 8.18 38.7 3.17 0.13 0.974

PYR 45 0.16 4.4 7.6 38.8 3.4 0.34 0.984

PUM 44.9 0.2 4.44 8.03 37.7 3.54 0.36 0.996

PSUM 46.2 0.216 4.88 8.88 35.2 4.34 0.33 1

2.2 Generating RocMLM Training Data243

We used the GFEM program Perple X (version 7.0.9, Connolly, 2009) to generate244

RocMLM training data across PT conditions as described in Section 2.1.1 and synthetic245

bulk mantle compositions as described in Section 2.1.2. The Perple X calculations were246

constrained to the Na2O-CaO-FeO-MgO-Al2O3-SiO2 (NCFMAS) chemical system to com-247

ply with the thermodynamic data and solution models of Stixrude and Lithgow-Bertelloni248

(2022). The Stixrude and Lithgow-Bertelloni (2022) dataset (stx21ver.dat) was used be-249

cause our initial tests with alternative thermodynamic datasets (hp02ver.dat and hp633ver.dat,250

Connolly and Kerrick, 2002; Holland et al., 2018; Holland and Powell, 2001) failed to re-251

produce the seismic wave velocities of geophysical reference models (PREM and STW105,252

Dziewoński and Anderson, 1981; Kustowski et al., 2008) with sufficient accuracy because253

these datasets lack a parametrization of the shear modulii of the minerals phases. Note254

that our Perple X calculations ignored TiO2, which was initially included to define ξ and255

derive synthetic bulk mantle compositions. Despite being measured as a major oxide com-256

ponent, the average TiO2 content of our standardized samples is 0.05 ± 0.1 wt.% (2σ,257

Table 1). Such small concentrations of TiO2 may safely be ignored in phase relation cal-258

culations with negligible effects on the RocMLM training dataset.259

The Perple X models used to generate the present RocMLM training database in-260

cluded equations of state for solution phases: olivine, plagioclase, spinel, clinopyroxene,261
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wadsleyite, ringwoodite, perovskite, ferropericlase, high-pressure C2/c pyroxene, orthopy-262

roxene, akimotoite, post-perovskite, Ca-ferrite, garnet, and Na-Al phase. Melt was not263

considered due to the absence of melt models in the Stixrude and Lithgow-Bertelloni (2022)264

dataset, but may be considered in future versions of training datasets if the elastic pa-265

rameters in hp02ver.dat are corrected. Once configured, Perple X generated RocMLM266

training data (density, as well as P- and S-wave seismic velocities) by minimizing the to-267

tal Gibbs Free Energy of a multicomponent multiphase thermodynamic system at fixed268

PTX conditions (Gibbs, 1878; Spear, 1993). The reader is referred to Connolly (2009)269

and Riel et al. (2022) for a complete description of the GFEM problem.270

In principle, applying identical sets of solution phase models, thermodynamic data,271

and bulk compositions will define identical Gibbs Free Energy hyperplanes. This implies272

that any GFEM algorithm should converge on identical phase relations. Thus, although273

this study uses Perple X exclusively, an identical set of training data can be generated274

by applying the procedures outlined above to other GFEM programs. Note that RocMLM275

capabilities and performance are primarily dependent on the size and the range of PTX276

conditions of the training dataset, not on the choice of GFEM algorithm.277

2.3 Training RocMLMs278

RocMLM training data were preprocessed using the following procedure. First, two-279

dimensional grids of rock properties (“pseudosections”) calculated by Perple X were stacked280

into a three-dimensional array, Z = (z1,1,1, . . . , zn,w,w), where w = 128 is the resolution281

of the PT grid and n = 128 is the number of random synthetic bulk mantle composi-282

tions represented by a ξ value. Z was flattened into arrays of training features (PT and283

ξ), X = (x1,1,1, . . . , xv,v,v), and training targets (density, Vp, and Vs), y = (y1,1,1, . . . , yv,v,v),284

where v = n·w2 = 1283 is the total number of training examples. Following common285

practice, X and y were scaled using “z-score normalization” before training.286

The preprocessed training data were then fit with three different nonlinear regres-287

sion algorithms (Decision Tree: DT, k-Neighbors: KN, and Neural Networks: NN) from288

the scikit-learn python library (Pedregosa et al., 2011). Each regression algorithm was289

tuned with a grid search approach, where a performance score (RMSE) was evaluated290

over all hyperparameter combinations relevant to the particular regression algorithm (Ta-291
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ble 3). The set of hyperparameters that produced the best score (lowest RMSE) was used292

to train the RocMLM.293

Table 3: RocMLM configuration. Hyperparameter values in parentheses are tested se-

quentially by a cross-validation grid search algorithm and the best set of hyperparameters

is chosen by the lowest RMSE. Hyperparameters that are not shown use default values

(see regression model documentation on scikit-learn.org).

Model Hyperparameter Value Tuned

DT splitter (best, random) tuned

max features (1, 2, 3) tuned

min samples leaf (1, 2, 3) tuned

min samples split (2, 4, 6) tuned

KN n neighbors (2, 4, 8) tuned

weights (uniform, distance) tuned

NN1 hidden layer sizes (8, 16, 32) tuned

NN2 hidden layer sizes ([16, 16], [32, 16], [32, 32]) tuned

NN3 hidden layer sizes ([32, 16, 16], [32, 32, 16], [32, 32, 32]) tuned

NN(all) learning rate (0.001, 0.005, 0.001) tuned

batch size 20% fixed

max epochs 100 fixed

2.4 Evaluating RocMLM Accuracy and Performance294

Connolly and Khan (2016) estimated the uncertainties of Vp and Vs to be on the295

order of 3–5% within the same thermodynamic framework used to generate RocMLM296

training data (Stixrude and Lithgow-Bertelloni, 2005). We can therefore consider the base-297

uncertainty of RocMLM predictions to be 3–5%. RocMLM predictions must also account298

for additional uncertainties that are introduced during RocMLM training (i.e., the vari-299

ance of residuals between RocMLM predictions and targets), which are about 2% for NN1300

and < 1% for DT, KN, and NN3. Assuming the lowest-uncertainty models (DT, KN,301

NN3) would be preferred for geodynamic applications, we ignore the small variances in-302

troduced during training (< 1%) and evaluate the total RocMLM prediction uncertain-303
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ties to be on the same order as the base GFEM uncertainty (3–5%) after Connolly and304

Khan (2016).305

RocMLM accuracy (in terms of RMSE) was evaluated by: 1) testing RocMLMs306

on a separate validation dataset to determine the generalization capacity of RocMLMs307

to unseen mantle conditions (internal accuracy), and 2) comparing RocMLMs predic-308

tions with geophysical reference models PREM and STW105 (external accuracy). The309

first test evaluates the degree to which RocMLMs can reproduce GFEM predictions. The310

second test evaluates the degree to which the “true data” used for RocMLM training re-311

produces the phase transitions actually observed in Earth’s upper mantle, which depend312

on the thermodynamic data, GFEM algorithm, and parameterization used to describe313

the composition of mantle rocks (i.e., ξ).314

The validation dataset was generated by Perple X in the same manner as the train-315

ing dataset, but shifted by one-half step (in the positive PT directions) so that RocMLM316

predictions could be evaluated at completely independent PT conditions. RocMLM per-317

formance was evaluated by: 1) measuring single-point prediction times (execution speed),318

and 2) scaling execution speed by RocMLM file size (disk space) to account for infor-319

mation compression (model efficiency).320

The number of PT points and synthetic bulk mantle compositions used for gen-321

erating training data were varied from 8 to 128 (211–221 total training examples) to test322

the sensitivity of RocMLM accuracy and performance with respect to the size (“capac-323

ity”) and composition of the training dataset. The same sets of training data were also324

used to evaluate single-point execution speed using a common Lookup Table approach,325

where a cubic spline interpolation was applied to the training dataset and rock proper-326

ties were evaluated at arbitrary PTX conditions. Prediction accuracy and performance327

were measured in a consistent manner so that direct comparisons could be made between328

RocMLMs, Lookup Tables, and GFEM programs.329

3 Results330

3.1 RocMLM Accuracy331

The following examples of Decision Tree (DT, Figure 3), single-layer Neural Net-332

work (NN1, Figure 4), and three-layer Neural Network (NN3, Figure 5) models demon-333
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strate how different regression algorithms ultimately influence the accuracy of RocMLM334

predictions (see Supplementary Information for all regression algorithms).335

DT predictions are practically indistinguishable from that of Perple X, indicating336

a nearly-perfect mapping of the validation dataset by the DT algorithm (RMSE for den-337

sity: 0.01 g/cm3, Vp and Vs: 0.02 km/s, Figure 3). Absolute differences between Per-338

ple X and DT predictions (residuals) are broadly dispersed and approach zero in most339

regions of PT space. Some concentrations of residuals exist near phase transitions, but340

are subtle and discontinuous (Figure 3g–i).341

In contrast, NN1 predictions are notably smoother than Perple X (Figure 4), with342

higher errors (RMSE for density: 0.02 g/cm3, Vp: 0.06 km/s, Vs: 0.05 km/s) that in-343

dicate an inability to resolve sharp gradients in physical properties when using a single-344

layer Neural Network with a small to moderate amount of neurons. This is evident by345

the NN1 residuals, which are systematically concentrated near phase transitions (Fig-346

ure 4g–i). NN1 profiles display relatively weak discontinuities with gradual changes in347

physical properties across the olivine � wadsleyite and ringwoodite � bridgmanite +348

ferropericlase transitions (Figure 4j–l), and phase transformations within the MTZ are349

virtually absent compared to DT and NN3 profiles. While NN1 predictions do not re-350

produce the validation dataset or geophysical profiles with the highest accuracy, deeper351

(and/or wider) NN architectures with more hidden-layers (e.g., NN3) are more capable352

(Figure 5). NN3 predictions fit the validation dataset and resolve discontinuities in geo-353

physical profiles with nearly equivalent accuracy as DT and KN algorithms (compare354

profiles in Supplementary Information).355

Comparing density, Vp, and Vs depth profiles predicted by RocMLMs (for an av-356

erage mid-ocean ridge-like geotherm with a mantle potential temperature of 1573 K) with357

PREM and STW105 reveals relatively low errors (density: ≤ 0.08 g/cm3, Vp: ≤ 0.26358

km/s, Vs: ≤ 0.14 km/s) and high correlations (R2 ≥ 0.94) that indicate good agreement359

between seismically-derived profiles and thermodynamic predictions, irrespective of re-360

gression algorithm (compare profiles in the Supplementary Information). The largest de-361

viations between RocMLM profiles, PREM, and STW105 fall within two regions: 1) be-362

tween 1–8 GPa, and 2) at the base of the MTZ (Figures 3–5j–l). At pressures lower than363

5 GPa, the divergence between RocMLM profiles and seismically-derived profiles may364

be explained by the low resolution of the 1D geophysical profiles relative to the extreme365

–15–



manuscript submitted to Geochemistry, Geophysics, Geosystems

spatial variability in composition and geotherms on Earth. Tests using an average con-366

tinental geotherm to calculate RocMLM profiles results in less divergence between RocMLM367

profiles and PREM at < 5 GPa compared to the mid-ocean ridge-like geotherms used368

to build the profiles presented in Figures 3–5. At pressures between 5–8 GPa, the two369

geophysical models show a discrepancy: PREM contains a discontinuity, especially in370

seismic velocities, while STW105 has a gradual and continuous increase. RocMLM pro-371

files between 5–8 GPa are more similar to STW105, which does not map any disconti-372

nuities until the olivine � wadsleyite transition at 410 km depth (Figures 3–5j–l).373

Within the MTZ, DT and NN3 profiles predict intermediate discontinuities, while374

PREM and STW105 are gradual and continuous (Figures 3,5g–i). As expected, compar-375

ing RocMLM profiles for different geotherms shows that the choice of a mantle poten-376

tial temperature leads to contrasting predictions of: 1) the overall evolution of rock prop-377

erties with depth, and 2) the depths, magnitudes, and sharpness of phase transitions within378

the MTZ (Figures 3–5g–i). RocMLM profiles show, similarly to those directly derived379

from the Perple X calculation, temperature-sensitive discontinuities at the olivine � wad-380

sleyite and wadsleyite � ringwoodite transitions, but a rather temperature insensitive381

ringwoodite � bridgmanite + ferropericlase transition (Figures 3–5g–i). This can be ex-382

plained by differences in Clapeyron slopes modeled by the Stixrude and Lithgow-Bertelloni383

(2022) dataset.384

3.2 RocMLM Performance385

We now compare RocMLM performance to two other tools classically used to pre-386

dict the variations of physical properties of mantle rocks in geodynamic models: GFEM387

programs and Lookup Tables. Note that RocMLM, GFEM, and Lookup Table perfor-388

mance is platform specific. Running analogous implementations with other programming389

languages and/or on alternative computer hardware will differ from the results presented390

here. All computations in this study were made using CPUs of a Macbook Pro (2022;391

M2 chip) with macOS 13.4 and using Python 3.11.4. All performance metrics were eval-392

uated with a single CPU core.393

Figure 6 shows how execution speed, efficiency, and accuracy scale with the capac-394

ity of Lookup Tables and RocMLMs. Here, “capacity” refers to the number of scalar val-395

ues stored by Lookup Tables, or alternatively, the number of pseudosection PTX points396
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Figure 3: PT diagrams showing density (left column, g/cm3), Vp (middle column,
km/s), and Vs (right column, km/s) predictions from a Perple X model with a PUM
bulk composition (a–c), a Decision Tree RocMLM (d–f), and absolute differences between
Perple X and DT (g–i) measured on the validation dataset. Depth profiles (j–l) compare
Perple X and DT predictions extracted along a 0.5 K/km adiabat with different man-
tle potential temperatures (white lines) with reference models PREM (solid black line,
Dziewoński and Anderson, 1981) and STW105 (dotted black line, Kustowski et al., 2008).
The RMSE in (j–l) indicates the measured differences between DT-1573 and PREM.
Colored ribbons indicate 5% uncertainty in RocMLM predictions.
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Figure 4: PT diagrams showing density (left column, g/cm3), Vp (middle column,
km/s), and Vs (right column, km/s) predictions from a Perple X model with a PUM bulk
composition (a–c), a single-layer Neural Network RocMLM (d–f), and absolute differences
between Perple X and NN1 (g–i) measured on the validation dataset. Other legend details
are the same as in Figure 3.
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Figure 5: PT diagrams showing density (left column, g/cm3), Vp (middle column,
km/s), and Vs (right column, km/s) predictions from a Perple X model with a PUM
bulk composition (a–c), a three-layer Neural Network RocMLM (d–f), and absolute differ-
ences between Perple X and NN3 (g–i) measured on the validation dataset. Other legend
details are the same as in Figure 3.
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“learned” by RocMLMs. Thus, “capacity” is intended to convey and compare the breadth397

of petrological “knowledge”, or predictive capabilities, of Lookup Tables and RocMLMs.398

Within the same context, the notion of “capacity” is irrelevant for GFEM programs. Rather,399

GFEM performance primarily scales with the number of chemical components, phase400

solutions, and size of the compositional space defined by the user, as well as automatic401

grid refinement settings and other user-defined configuration options.402

GFEM performance is reported using the range of average execution speeds (4–228403

ms) and efficiencies (60–3138 ms·Mb) that we measured while generating our RocMLM404

training datasets as described in Section 2.2. To demonstrate the sensitivity of GFEM405

performance to alternative Perple X configurations, we also show GFEM execution speed406

and efficiency for similar calculations using the thermodynamic data and phase solutions407

of Holland et al. (2018). Note that none of the Perple X calculations using the Holland408

et al. (2018) configuration were used to train RocMLMs due to inaccurate seismic ve-409

locity predictions, and their performance metrics are only shown for illustrative purposes.410

Figure 6: Computational efficiency of various approaches in terms of execution speed (a)
and model efficiency (b). “Capacity” (x-axis) is a proxy for the petrological “knowledge”,
or predictive capabilities, of Lookup Tables and RocMLMs. White regions indicate GFEM
efficiencies for different Perple X configurations (thermodynamic dataset, chemical sys-
tem, and number of solution phases are indicated in square brackets). stx21: Stixrude and
Lithgow-Bertelloni (2022), hp633: Holland and Powell (2011) updated in Holland et al.
(2018). Perple X was run without multilevel grid refinement. RMSE is measured between
density predictions and the validation dataset.

For Lookup Tables, execution speed and efficiency both scale roughly linearly with411

capacity on a logarithmic scale—indicating an inverse power-law relationship between412

Lookup Table capacity and performance (Figure 6). RocMLM performance, in contrast,413
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scales differently depending on the performance metric and regression algorithm. For ex-414

ample, RocMLM execution speed remains roughly constant, or increasing slightly with415

capacity, and shows relatively small variance among all regression algorithms (0.14 ± 0.26416

ms, 2σ, Figure 6a). Yet RocMLM efficiency is markedly different for DT and KN algo-417

rithms compared to NN algorithms (Figure 6b). Despite the fast execution times of KN418

and DT algorithms (Figure 6a), their efficiency scales roughly linearly with capacity on419

a logarithmic scale—indicating an inverse power-law relationship between efficiency and420

capacity similar to Lookup Tables (Figure 6b). NN algorithms, on the other hand, show421

roughly constant efficiencies that indicate a high degree of information compression with-422

out sacrificing execution speed (Figure 6b). We note that training times for NN algo-423

rithms are many orders of magnitude larger than DT and KN algorithms (Supplemen-424

tary Information). However, training times are neither limiting nor critical for geody-425

namic applications as training is independent from, and precedes numerical simulations.426

Since accuracy is measured relative to the rock properties generated by GFEM pro-427

grams, GFEM programs have perfect accuracy by definition. With respect to RocMLMs,428

validation accuracies (RMSE) are observed to be roughly constant for regression algo-429

rithms that apply binary decisions or local distance-based weights (DT and KN), while430

algorithms that apply global activation-based weights (NNs) show a positive correlation431

between accuracy and capacity (Figure 6). In addition to improving accuracy with in-432

creasing amounts of training examples, NN accuracy also increases with the number of433

hidden-layers (Figure 6) because deeper networks are more capable of fitting sharp gra-434

dients in the training data (see Supplementary Information for examples of NN1, NN2,435

and NN3 RocMLMs). We also tested the effects of NN width (changing the number of436

nodes within each hidden layer), but this had a negligible impact on NN performance437

and accuracy compared to increasing NN depth.438

4 Discussion439

4.1 RocMLM Performance Tradeoffs440

RocMLM performance and accuracy are both critical for geodynamic applications441

and crucial for determining if RocMLMs are an improvement over methods commonly442

used for predicting rock properties in numerical geodynamic simulations. In terms of pure443

execution speed, our testing demonstrates that RocMLMs can make predictions between444
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101–103 times faster than GFEM programs and Lookup Tables (Figure 6), depending445

on the GFEM program configuration. The difference in execution speed between Lookup446

Tables and RocMLMs is small for low-resolution models (Figure 6) that are limited to447

≤ 16 mantle compositions and large PT intervals (≥ 1.7 GPa and 100 K PT step sizes).448

However, such low-resolution models are not an obvious improvement over simple poly-449

nomial approximations of a selective number of important phase transformations. At higher450

resolutions, RocMLMs can accurately resolve the physical properties of all thermodynamically-451

stable mineral assemblages in fine detail (at PT intervals of ≤ 0.2 GPa and 12 K) and452

for a wide variety of bulk mantle compositions (Figure 2). In addition to their broad pre-453

dictive capabilities, high-resolution RocMLMs make predictions at speeds (approximately454

0.1–1 ms, Figure 6) that allow computation of physical properties at the node-scale dur-455

ing geodynamic simulations. We therefore argue that high-resolution RocMLMs over-456

come all practical limitations for implementing thermodynamically self-consistent den-457

sity evolution in numerical geodynamic models.458

With respect to ranking the practicality of different RocMLM for geodynamic ap-459

plications, execution speeds and accuracies alone suggest that high-resolution RocMLMs460

will perform with roughly equivalent outcomes regardless of the regression algorithm (Fig-461

ure 6a). However, our testing reveals an obvious tradeoff between RocMLM performance462

and accuracy when accounting for compression ratio (i.e., the amount of “learned” in-463

formation relative to the RocMLM file size). Figure 6b shows DT and KN algorithms464

becoming rapidly inefficient compared to NNs as the capacity of the training dataset in-465

creases. This is because NN algorithms require relatively little information to make pre-466

dictions after training (weights and biases for each neuron) compared to DT (tree struc-467

ture: nodes, splits, and predictions) and KN (entire training dataset with distance weights)468

algorithms. Moreover, accuracy tends to improve monotonically with dataset capacity469

for NN, but not for DT or KN. We therefore argue that deep NN RocMLMs are the most470

practical choice for geodynamic applications for three reasons: 1) modeling more rock471

types only requires adding more training data, 2) adding more training data improves472

prediction accuracy without diminishing performance, and 3) further improvements and473

adaptations to different geodynamic applications are possible by exploring different ar-474

chitectures than the simple NN models we have tested thus far.475

The main limitations of NN RocMLMs are twofold: 1) training is computationally476

expensive compared to other regression algorithms (Supplementary Information) and 2)477
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shallow NN architectures imply smoother gradients in rock properties than GFEM cal-478

culations. We do not consider these limitations critical because training time is indepen-479

dent from RocMLM performance and even if deeper NN architectures are needed to fit480

discontinuities in rock properties with high accuracy, the number of layers and neurons481

in each layer remains small (Table 3). We note that our testing has been limited to the482

prediction of three properties that are mostly P-dependent and are relatively continu-483

ous despite a few large discontinuities. In principle, RocMLMs can be trained on any ther-484

modynamic variable output by GFEM programs. However, we have not yet trained RocMLMs485

on more discrete, discontinuous, and/or highly T-dependent variables, such as modal pro-486

portions of minerals, volatile contents, or melt fraction, which will be treated in future487

developments of RocMLMs.488

4.2 Geophysical and Thermodynamic Estimates of Elastic Properties489

The amount of overlap between RocMLM profiles and PREM (Figures 3–3) sug-490

gests good agreement between thermodynamic and geophysical estimates of the elastic491

properties of mantle rocks within the limits of our training dataset and Perple X con-492

figuration (see Sections 2.1 and 2.2). Discrepancies between thermodynamic profiles and493

PREM can be explained by chemical heterogeneity and/or differences in mantle geotherms494

that modify phase relations (Goes et al., 2022; Karki and Stixrude, 1999; Karki et al.,495

2001; Stixrude and Lithgow-Bertelloni, 2012; Waszek et al., 2021; Xu et al., 2008). Be-496

cause the RocMLM training dataset spans a wide array of synthetic bulk mantle com-497

positions, we can directly test the sensitivity of thermodynamic estimates to changes in498

bulk FeO–MgO contents (Figure 7).499

As Fertility Index (ξ) increases by refertilization and/or lack of melt extraction and500

the bulk mantle composition becomes more Fe-rich (and more dense), Vp and Vs respond501

(both positively and negatively) according to the equations of state described in Stixrude502

and Lithgow-Bertelloni (2005). RocMLM training data show that density is the least sen-503

sitive parameter to ξ overall with only modest variations across a broad range of man-504

tle rocks from fertile to highly depleted (ξ = 0.76, Figure 7a). The largest density vari-505

ations occur at pressures below the olivine � wadsleyite transition (< 410 km), yet are506

still small enough (approximately 3–5 %) to imply that spontaneous mantle convection507

requires strong thermal gradients and/or hydration by metamorphic fluids in addition508

to melt extraction.509
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In contrast to density, Vp and Vs are more sensitive to ξ overall, especially at pres-510

sures above the olivine � wadsleyite transition (> 410 km). RocMLM training data sug-511

gests that an “optimal” Vp/Vs profile requires a more depleted mantle between 410–670512

km and a more fertile mantle at < 410 km (Figure 7b,c). Forming this compositional513

layering pattern is counterintuitive, however, as partial melting is expected to be more514

pervasive at lower pressures. Moreover, density profiles are incongruent with this pat-515

tern, suggesting instead that a depleted mantle at < 410 km and more fertile mantle at516

> 410 km are required for an optimal fit with PREM and STW105 (Figure 7a).517

Figure 7: Depth profiles of RocMLM training data along a 1573 K mantle adiabat
showing the sensitivities of thermodynamic estimates of density (a), Vp (b), and Vs (c)
to changes in bulk mantle composition (as represented by the Fertility Index, ξ). Geo-
physical profiles PREM and STW105 (green lines) and the profiles of synthetic mantle
end-member compositions PSUM and DSUM (thick colored lines) are shown for reference.
Thin colored lines show profiles for the entire range of RocMLM training data.

5 Conclusions518

The dynamics of Earth’s upper mantle is largely driven by density contrasts stem-519

ming from changes in PT conditions, which lead to phase transformations in mantle rocks.520

These phase transformations also modify the elastic properties of mantle rocks. There-521

fore phase changes must be considered when inverting present-day mantle structure from522

seismic data. Likewise, numerical geodynamic simulations of mantle convection must ac-523

count for thermodynamics, but are typically implemented with simple PT-dependent pa-524

rameterizations of rock properties and phase boundaries that do not explicitly account525

for changes in Gibbs Free Energy resulting from changes in PT and in bulk composition.526

Here, we introduce RocMLMs as an alternative to GFEM programs and we evaluate RocMLM527

performance and accuracy. We also show how the RocMLM predictions compare to PREM528

and STW105. Our main findings are as follows:529
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1. RocMLMs predict density and elastic properties with high accuracy and are up530

to 101–103 faster than commonly used methods. This improvement in prediction531

speed makes thermodynamically self-consistent mantle convection within high-resolution532

numerical geodynamic models practical for the first time.533

2. RocMLMs trained with moderately deep (3 hidden layers) NNs are more robust534

and efficient compared to RocMLMs trained with other regression algorithms, and535

are therefore the most practical models for coupling with numerical geodynamic536

codes.537

3. RocMLM training data are sensitive to bulk mantle composition and geothermal538

gradients, yet show good agreement with PREM and STW105 for an average man-539

tle geotherm.540

Based on our results, we argue that moderately deep NN RocMLMs can be excep-541

tional emulators of GFEM programs in geodynamic simulations that require computa-542

tionally efficient predictions of rock properties. We have demonstrated that RocMLMs543

perform remarkably well for dry mantle rocks with compositions ranging from very fer-544

tile lherzolites to strongly depleted harzburgites and PT conditions ranging from 1–28545

GPa and 773–2273 K.546

Moreover, the RocMLM approach can be used with any GFEM program and ther-547

modynamic dataset. Any improvement to the underlying thermodynamic data should548

further increase the accuracy of RocMLM predictions. Testing RocMLMs predictions549

on other thermodynamic variables of interest, including modal proportions of minerals,550

volatile contents, and melt fractions will be the focus of future studies. Likewise, in fu-551

ture works, we will extend the training data to include hydrous systems and additional552

end-member mantle compositions (e.g., pyroxenites and dunites).553
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