RocMLMs *Predicting Rock Properties through Machine Learning Models*

¹Buchanan Kerswell
¹Nestor Cerpa*
¹Andréa Tommasi*
¹Marguerite Godard
²José Alberto Padrón-Navarta
¹CNRS, Géosciences Montpellier
²Andalusian Earth Science Institute
April 15, 2024

We developed RocMLMs to emulate dynamic phase changes in numerical simulations of mantle convection

Phase transformations strongly impact mantle convection

No phase change

Blankenbach et al. (1989; *GJI*)

<u>Phase change with:</u> $\rho_1 > \rho_2$

Christensen & Yuen (1985; JGR:SE)

- + : adds a degree of thermodynamic self-consistency
- : need Lookup Tables for each rock composition and rock property

Phase equilibria modeling is more effective, but slow

- + : thermodynamically self-consistent, can handle changing compositions
- : computationally expensive to run (too slow for high-res simulations)

Machine learning models (RocMLM) are effective and fast

- + : potentially much faster than Lookup Tables and GFEM
- : requires building and training on a large dataset

3111 natural peridotite samples were reduced by PCA to 2 "chemical" components: PC1 & PC2

3111 natural peridotite samples were reduced by PCA to 2 "chemical" components: PC1 & PC2

A hypothetical mixing array was used to sample synthetic bulk compositions for RocMLM training

A hypothetical mixing array was used to sample synthetic bulk compositions for RocMLM training

RocMLM training dataset contains 2^{21} (~2.1M) phase equilibria across an array of 128 mantle comp's from fertile \rightarrow depleted

RocMLMs are 10¹–10³ times faster than common methods

Neural Networks are more scalable than other algorithms

In summary, RocMLMs overcome practical limitations for emulating dynamic phase changes in numerical simulations of mantle convection

RocMLMs are 10¹–10³ times faster than GFEM programs and Lookup Tables

RocMLMs trained with Neural Networks are more efficient compared to other regression algorithms

RocMLM training data show good agreement with PREM and STW105 for an average mantle geotherm

Questions?