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Problem: predicting mineral
assemblages is a tedious

minimization problem that is N
computationally expensive !
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(At given P, T and C)

Riel et al. (2022; G3)



Problem
definition

Numerical Implication: Cannot

change rock properties
dynamically in large scale
geodynamic simulations Kerswellet al. (2021: G3)

Physical Implication: Density- 921 x 301 nodes * 1.0 s to compute stable assemblage =3d 5h

driven mantle convection is not 921 x 301 nodes * 1.0 ms to compute stable assemblage =4m 30 s

self-consistent 921 x 301 nodes * 0.1 ms to compute stable assemblage = 28s



PO SS i b le Serial Parallel

solutions

1. E te th d '
xecute thermodynamic M m

calculations in parallel (Riel l

etal., 2022 G3)

Challenge: need 10° cores for

10° efficiency improvement

Meso-LR Cluster @ UM: 308 Nodes w/ 28 cores per node
103 cores = 36 Nodes = 12% usage of Meso-LR
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Challenge: need to store
independent lookup tables for
each rock type and target rock

property
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Challenge: compress many
thermodynamic calculations
into a small efficient function of
P, T, and X

F(P, T, X)



Research
question

Can a pretrained ML models infer
changes to rock properties
accurately and more efficiently
than thermodynamic programs?

Implication: pretrained ML models
can replace thermodynamic
programs for generalized tasks




Hypothesis

ML models trained on an array
of precomputed rock properties
can improve the speed of
predicting rock properties by
103-10% times

Implication: it is now feasible to

simulate rock property changes
self-consistently in large-scale
geodynamic simulations




Steps for using ML models for predicting
rock properties

01

Build database of
rock properties for
a defined range of

(P, T, X)

02

Train ML models to
predict rock

properties

03

Benchmark ML
models against
incumbent
thermodynamic

programs

04

Implement ML
models into large-
scale geodynamic

simulations B




Step 1a: compile
peridotite data

Typically, rocks are modelled with up
to 11 chemical components (e.g.,
Al,O,5 CaO, MgO, FeO, K,0, NaO,
TiO,, Cry,03)

Implication: pretrained ML models
need 13 inputs (PT+ 11 oxides) to
predict rock properties
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Step 1b: reduce dimensionality
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Implication: pretrained ML models need 3 inputs (PT + Fertility Index) to predict rock properties



Step 1c: compute phase diagrams
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Step 2 & 3: train

and benchmark
ML models

On average, ML models make
predictions 103 times faster than
thermodynamic (GFEM) programs
and lookup tables

Implication: pretrained ML models
are a majorimprovement over
incumbent methods
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Step 2 & 3: train

and benchmark
ML models

The efficiency of some ML models
scales poorly when considering the
memory cost

Implication: NN models compress
information better than KN or DT

Efficiency (ms~1-Mb~1)
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Step 2 & 3: train and benchmark ML models

a) Prediction Efficiency b). . Training Time c) Validation Error
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Implication: there are tradeoffs between prediction efficiency, training time, and accuracy



b)

Decision Tree

0.0

Residuals

- 34 0.1
' 0.2
2000 2000
20 ° 1500 ¢\ 2.9 20~ 10010500\@ -0.2
P10 o 1000 % P(Gryy~ 0 s

Residuals

o

0.2

0.0

a) Perple X b) Neural Net 1L C)

4.5 4.5

|

4.0 4.5 4.0
;
| 3.0 0

2000
20 P 1500\@ 2.9 2.9
P (Grs) ;1000 <

2000
20 ISOO@

p(GPa)lo o 1000 <\




Neural Net 1L

: \Mo
20 1500@

p (Gpa)lo o 1000 <\

. \Mo
20 1500\@

p(GPa)10 o 1000 <\

4.5

4.0

3.4

0.1
0.0

Residuals

At

0.2

0.0

-0.1

\/&o
20 1500©

p(GPa)lo o 1000 <\

Perple X b) Neural Net 3L

: \Mo
20 1500@

P(GPa)lo 0 1000 <\

. \Mo
20 1500@

P(GPa)lo 0 1000 <\

4.5

4.0

3.4

0.1
0.0

Residuals

0.1

] “WN [ !

I 0.0

-0.1

\Mo
20 1500\@

i

10

\
P (Gpy, o 1000 <




Which ML model is the “best”?

a) Prediction Efficiency b) Training Time c) Validation Error
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Fastest: DT or KN
Most accurate: DT or KN
Most efficienct overall (best compression): NN



Questions?

Thanks for the attention
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