RocMLMs: Predicting Rock Properties through Machine Learning Models

Buchanan Kerswell et al. Géosciences Montpellier January 23, 2024

Problem definition

Problem: predicting mineral assemblages is a tedious minimization problem that is computationally expensive!

Riel et al. (2022; G3)

Problem definition

Numerical Implication: Cannot change rock properties dynamically in large scale geodynamic simulations

Physical Implication: Density-driven mantle convection is not self-consistent

921 x 301 nodes * **1.0 s** to compute stable assemblage = 3d 5h 921 x 301 nodes * **1.0 ms** to compute stable assemblage = 4m 30 s 921 x 301 nodes * **0.1 ms** to compute stable assemblage = 28s

Possible solutions

1. Execute thermodynamic calculations in parallel (Riel et al., 2022 G3)

Challenge: need 10³ cores for 10³ efficiency improvement

Meso-LR Cluster @ UM: 308 Nodes w/ 28 cores per node 10³ cores ≈ 36 Nodes ≈ 12% usage of Meso-LR

Possible solutions

Use precomputed lookup tables

Challenge: need to store independent lookup tables for each rock type and target rock property

Possible solutions

3. Use pretrained machine learning (ML) models

Challenge: compress many thermodynamic calculations into a small efficient function of P, T, and X

Research question

Can a pretrained ML models infer changes to rock properties accurately and more efficiently than thermodynamic programs?

Implication: pretrained ML models can replace thermodynamic programs for generalized tasks

Hypothesis

ML models trained on an array of precomputed rock properties can improve the speed of predicting rock properties by $10^3–10^4$ times

Implication: it is now feasible to simulate rock property changes self-consistently in large-scale geodynamic simulations

Steps for using ML models for predicting rock properties

01

Build database of rock properties for a defined range of (P, T, X)

02

Train ML models to predict rock properties

03

Benchmark ML models against incumbent thermodynamic programs

04

Implement ML models into large-scale geodynamic simulations $\overline{\mathbb{Z}}$

Step 1a: compile peridotite data

Typically, rocks are modelled with up to 11 chemical components (e.g., Al_2O_3 , CaO, MgO, FeO, K_2O , NaO, TiO_2 , Cr_2O_3)

Implication: pretrained ML models need 13 inputs (PT + 11 oxides) to predict rock properties

Step 1b: reduce dimensionality

Implication: pretrained ML models need 3 inputs (PT + Fertility Index) to predict rock properties

Step 1c: compute phase diagrams

PTX resolution: $128 \times 128 \times 128 = 128^3$ training examples (~2.1M)

Step 2 & 3: train and benchmark ML models

On average, ML models make predictions 10³ times faster than thermodynamic (GFEM) programs and lookup tables

Implication: pretrained ML models are a major improvement over incumbent methods

Step 2 & 3: train and benchmark ML models

The efficiency of some ML models scales poorly when considering the memory cost

Implication: NN models compress information better than KN or DT

Step 2 & 3: train and benchmark ML models

Implication: there are tradeoffs between prediction efficiency, training time, and accuracy

Which ML model is the "best"?

Fastest: DT or KN

Most accurate: DT or KN

Most efficienct overall (best compression): NN

Questions?