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We developed RocMLMs to emulate dynamic phase changes 
in numerical simulations of mantle convection

Training Dataset

Performance

Accuracy
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Phase transformations strongly impact mantle convection

No phase change Phase change with: ρ1 > ρ2

Blankenbach et al. (1989; GJI) Christensen & Yuen (1985; JGR:SE)
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Lookup Tables are effective at implementing phase changes

Density Lookup Table
Temperature

Density
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Lookup Tables are effective at implementing phase changes

Density Lookup Table
Temperature

Density

Ringwood (1991; Geochimica)
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Lookup Tables are effective at implementing phase changes

Temperature
Density Lookup Table

Density
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Lookup Tables are effective at implementing phase changes

+ : adds a degree of thermodynamic self-consistency

Temperature

Density

– : need Lookup Tables for each rock composition and rock property

Density Lookup Table
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Phase equilibria modeling is more effective, but slow

+ : thermodynamically self-consistent, can handle changing compositions

Temperature

Density

– : computationally expensive to run (too slow for high-res simulations)

Gibbs Free Energy minimization (GFEM)
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Machine learning models (RocMLM) are effective and fast

+ : potentially much faster than Lookup Tables and GFEM

Temperature

Density

– : requires building and training on a large dataset

Kerswell et al. (2024; in review JGR:MLC)

Training dataset Regression algorithm

RocMLM

𝑓 𝑃, 𝑇, 𝑋



RocMLM training data were designed to be relevant for 
convection in the upper mantle

10Kerswell et al. (2024; in review JGR:MLC)

Harzburgite

(depleted)

Lherzolite

(fertile)



RocMLM training data were designed to be relevant for 
convection in the upper mantle

11Kerswell et al. (2024; in review JGR:MLC)

Harzburgite

(depleted)

Lherzolite

(fertile)

P : 1–28 GPa

T : 773–2273 K



RocMLM training data were designed to be relevant for 
convection in the upper mantle

12Kerswell et al. (2024; in review JGR:MLC)

Harzburgite

(depleted)

Lherzolite

(fertile)

P : 1–28 GPa

X : [ Na2O-CaO-FeO-MgO-Al2O3-SiO2 ]

T : 773–2273 K



RocMLM training data were designed to be relevant for 
convection in the upper mantle

13Kerswell et al. (2024; in review JGR:MLC)

Harzburgite

(depleted)

Lherzolite

(fertile)

P : 1–28 GPa

X : [ Na2O-CaO-FeO-MgO-Al2O3-SiO2 ]

T : 773–2273 K

Dimensions : 2 + 6 = 8

Need to reduce this !



3111 natural peridotite samples were reduced by PCA to 2 
“chemical” components: PC1 & PC2

14Kerswell et al. (2024; in review JGR:MLC)

PC loading vectors

Data from Earthchem.org



3111 natural peridotite samples were reduced by PCA to 2 
“chemical” components: PC1 & PC2

15Kerswell et al. (2024; in review JGR:MLC)

Hypothetical mantle 

endmembers

Data from Earthchem.org



A hypothetical mixing array was used to sample synthetic 
bulk compositions for RocMLM training

16Kerswell et al. (2024; in review JGR:MLC)

Synthetic samples used for 

RocMLM training



A hypothetical mixing array was used to sample synthetic 
bulk compositions for RocMLM training

17Kerswell et al. (2024; in review JGR:MLC)

ξ Fertility Index parameter 

represents composition 

ξ : [ Na2O-CaO-FeO-MgO-Al2O3-SiO2 ]

Shaw (1970; Geochimica)

https://www.codecogs.com/eqnedit.php?latex=%5Cxi%20%3D%201%20-%20F%20%3D%20R%5E%7B%5Cfrac%7B1%7D%7B(%5Cfrac%7B1%7D%7BD_0%7D)%20-%201%7D%7D


RocMLM training dataset contains 221 (~2.1M) phase equilibria 
across an array of 128 mantle comp’s from fertile → depleted

18Kerswell et al. (2024; in review JGR:MLC)

Training data are sensitive to mantle composition



RocMLMs are 101–103 times faster than common methods

19Kerswell et al. (2024; in review JGR:MLC)



Neural Networks are more scalable than other algorithms

20Kerswell et al. (2024; in review JGR:MLC)



In summary, RocMLMs overcome practical limitations for 
emulating dynamic phase changes in numerical simulations 
of mantle convection

RocMLMs are 101–103 times 
faster than GFEM programs and 
Lookup Tables

RocMLMs trained with Neural 
Networks are more efficient 
compared to other regression 
algorithms

RocMLM training data show 
good agreement with PREM 
and STW105 for an average 
mantle geotherm

Questions?
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RocMLM2: extending training dataset to include H2O

22Kerswell et al. (2024; in prep)

0.1 %H2O 0.2 %H2O 1 %H2O 5 %H2O… … …

P : 1–28 GPa X : [Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O] → [ξ, H2O ]

T : 773–2273 K Dimensions : 2 + 2 = 4 Size : 5,292,032



Dry mantle compositions show sharp density discontinuities 
where Ol transforms into denser Mg-Fe-rich phases
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Olivine

Wad

Maj

Ring Pv

Wus

Cpx

Grt
Opx

Kerswell et al. (2024; in prep)

Ol transitions in a dry 

fertile mantle



Adding water hydrates the MTZ by stabilizing high-density Mg 
silicate minerals

24

Olivine

chdr

Maj

Ring
Pv

Wus

Cpx

Grt

Opx

Kerswell et al. (2024; in prep)

prl

Hydrous phases replace 

Wad and Pv in a wet 

fertile mantle



Adding water smooths out sharp density discontinuities 
within the MTZ but does not produce melting

25Kerswell et al. (2024; in prep)

More depleted mantle compositions can potentially store more water



Some ML algorithms (small NN) show bias due to strongly 
irregular training data distributions

26Kerswell et al. (2024; in prep)

Artefacts induced from density distribution = large residuals



Larger NN (and other ML algorithms) show better predictions 
and higher internal accuracies

27Kerswell et al. (2024; in prep)

Artefacts from density distribution disappear = small residuals



RocMLM performance continues to exceed GFEM and Lookup 
Table approaches

28Kerswell et al. (2024; in prep)
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