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We developed RocMLMs to emulate dynamic phase changes
IN numerical simulations of mantle convection
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Phase transformations strongly impact mantle convection
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Lookup Tables are effective at implementing phase changes
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Lookup Tables are effective at implementing phase changes
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Lookup Tables are effective at implementing phase changes
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Lookup Tables are effective at implementing phase changes
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+ . adds a degree of thermodynamic self-consistency
— . need Lookup Tables for each rock composition and rock property



Phase equilibria modeling is more effective, but slow
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+ : thermodynamically self-consistent, can handle changing compositions
— . computationally expensive to run (too slow for high-res simulations)



Machine learning models (RocMLM) are effective and fast
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+ : potentially much faster than Lookup Tables and GFEM
— : requires building and training on a large dataset
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RocMLM training data were designed to be relevant for
convection in the upper mantle
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RocMLM training data were designed to be relevant for
convection in the upper mantle
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RocMLM training data were designed to be relevant for
convection in the upper mantle
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RocMLM training data were designed to be relevant for
convection in the upper mantle
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Need to reduce this !
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3111 natural peridotite samples were reduced by PCA to 2
“chemical” components: PC1 & PC2
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3111 natural peridotite samples were reduced by PCA to 2
“chemical” components: PC1 & PC2

a ) Data from Earthchem.org
101
- |[FeOT
Ti02 NaZO]
. *—%‘ A,O; CaO)
N . i . . . |
@)
o
0)
\ Hypothetical mantle
_5- ® Iherzolite '@ harzburgite endmembers
0) 5
PC1

Kerswell et al. (2024; in review JGR:MLC)



A hypothetical mixing array was used to sample synthetic
bulk compositions for RocMLM training
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A hypothetical mixing array was used to sample synthetic
bulk compositions for RocMLM training
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RocMLM training dataset contains 22! (~2.1M) phase equilibria

across an array of 128 mantle comp’s from fertile - depleted
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Training data are sensitive to mantle composition
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RocMLMs are 101-103 times faster than common methods
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Neural Networks are more scalable than other algorithms
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In summary, RocMLMs overcome practical limitations for
emulating dynamic phase changes in numerical simulations
of mantle convection

Training dataset Reqgression algorithm

RocMLMs are 101-103 times
faster than GFEM programs and
Lookup Tables

RocMLMs trained with Neural
Networks are more efficient
compared to other regression
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RocMLM2: extending training dataset to include H20
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Dry mantle compositions show sharp density discontinuities
where Ol transforms into denser Mg-Fe-rich phases

Sample: R (0.99 £, 0.00 wt.% H,0)
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Adding water hydrates the MTZ by stabilizing high-density Mg
silicate minerals

Sample: 000 (1.00 &, 3.12 wt.% H,0)
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Adding water smooths out sharp density discontinuities
within the MTZ but does not produce melting
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More depleted mantle compositions can potentially store more water
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Some ML algorithms (small NN) show bias due to strongly
iIrregular training data distributions
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Artefacts induced from density distribution = large residuals
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Larger NN (and other ML algorithms) show better predictions

and higher internal accuracies
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Artefacts from density distribution disappear = small residuals
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RocMLM performance continues to exceed GFEM and Lookup
Table approaches
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