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We developed RocMLMs to emulate dynamic phase changes 
in numerical simulations of mantle convection
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Lookup Tables are effective at implementing phase changes
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Lookup Tables are effective at implementing phase changes
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Ringwood (1991; Geochimica)
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Lookup Tables are effective at implementing phase changes
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Lookup Tables are effective at implementing phase changes

+ : adds a degree of thermodynamic self-consistency
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– : need Lookup Tables for each rock composition and rock property

Density Lookup Table
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Phase equilibria modeling is more effective, but slow

+ : thermodynamically self-consistent, can handle changing compositions
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– : computationally expensive to run (too slow for high-res simulations)

Gibbs Free Energy minimization (GFEM)
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Machine learning models (RocMLM) are effective and fast
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Kerswell et al. (2024; submitted G3)
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Machine learning models (RocMLM) are effective and fast

Temperature
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Kerswell et al. (2024; submitted G3)

Training dataset Regression algorithm
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Machine learning models (RocMLM) are effective and fast

+ : potentially much faster than Lookup Tables and GFEM

Temperature

Density

– : requires building and training on a large dataset

Kerswell et al. (2024; submitted G3)

RocMLM

𝑓 𝑃, 𝑇, 𝑋



RocMLM training data were designed to be relevant for 
convection in the upper mantle

11Kerswell et al. (2024; JGR:MLC)
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RocMLM training data were designed to be relevant for 
convection in the upper mantle
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Harzburgite

(depleted)

Lherzolite

(fertile)

P : 1–28 GPa

T : 773–2273 K

Kerswell et al. (2024; JGR:MLC)



RocMLM training data were designed to be relevant for 
convection in the upper mantle
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Harzburgite

(depleted)

Lherzolite

(fertile)

P : 1–28 GPa

X : [ Na2O-CaO-FeO-MgO-Al2O3-SiO2 ]

T : 773–2273 K

Kerswell et al. (2024; JGR:MLC)



RocMLM training data were designed to be relevant for 
convection in the upper mantle
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Harzburgite

(depleted)

Lherzolite

(fertile)

P : 1–28 GPa

X : [ Na2O-CaO-FeO-MgO-Al2O3-SiO2 ]

T : 773–2273 K

Dimensions : 2 + 6 = 8

Need to reduce this !

Kerswell et al. (2024; JGR:MLC)



A hypothetical mixing array was used to sample synthetic 
bulk compositions for RocMLM training
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ξ Fertility Index parameter 

represents composition 

ξ : [ Na2O-CaO-FeO-MgO-Al2O3-SiO2 ]

Shaw (1970; Geochimica)

Kerswell et al. (2024; JGR:MLC)

https://www.codecogs.com/eqnedit.php?latex=%5Cxi%20%3D%201%20-%20F%20%3D%20R%5E%7B%5Cfrac%7B1%7D%7B(%5Cfrac%7B1%7D%7BD_0%7D)%20-%201%7D%7D


RocMLM training dataset contains 221 (~2.1M) phase equilibria 
across an array of 128 mantle comp’s from fertile → depleted
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Training data are sensitive to mantle composition

Kerswell et al. (2024; JGR:MLC)



RocMLMs are 101–103 times faster than common methods

17Kerswell et al. (2024; JGR:MLC)

Prediction speed 

is still fast for the 

largest models



In summary, RocMLMs overcome practical limitations for 
emulating dynamic phase changes in numerical simulations 
of mantle convection

RocMLMs are 101–103 times 
faster than GFEM programs and 
Lookup Tables

RocMLMs trained with Neural 
Networks are more efficient 
compared to other regression 
algorithms

RocMLM training data show 
good agreement with PREM 
and STW105 for an average 
mantle geotherm

Questions?

18Kerswell et al. (2024; JGR:MLC)
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