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We developed RocMLMs to emulate dynamic phase changes
IN numerical simulations of mantle convection
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Lookup Tables are effective at implementing phase changes
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Lookup Tables are effective at implementing phase changes
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Lookup Tables are effective at implementing phase changes
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Lookup Tables are effective at implementing phase changes
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+ . adds a degree of thermodynamic self-consistency
— . need Lookup Tables for each rock composition and rock property



Phase equilibria modeling is more effective, but slow
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+ : thermodynamically self-consistent, can handle changing compositions
— . computationally expensive to run (too slow for high-res simulations)



Machine learning models (RocMLM) are effective and fast
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Machine learning models (RocMLM) are effective and fast
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Machine learning models (RocMLM) are effective and fast
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+ : potentially much faster than Lookup Tables and GFEM
— : requires building and training on a large dataset

Kerswell et al. (2024; submitted G3)

10



RocMLM training data were designed to be relevant for
convection in the upper mantle

Harzburgite
(depleted) X
T c
O
| 3
o
Qo
Lherzolite g
(fertile) O

Kerswell et al. (2024; JGR:MLC) 11



RocMLM training data were designed to be relevant for
convection in the upper mantle
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RocMLM training data were designed to be relevant for
convection in the upper mantle
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RocMLM training data were designed to be relevant for
convection in the upper mantle
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Need to reduce this !
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A hypothetical mixing array was used to sample synthetic
bulk compositions for RocMLM training
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https://www.codecogs.com/eqnedit.php?latex=%5Cxi%20%3D%201%20-%20F%20%3D%20R%5E%7B%5Cfrac%7B1%7D%7B(%5Cfrac%7B1%7D%7BD_0%7D)%20-%201%7D%7D

RocMLM training dataset contains 22! (~2.1M) phase equilibria

across an array of 128 mantle comp’s from fertile - depleted
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Training data are sensitive to mantle composition
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RocMLMs are 101-103 times faster than common methods
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In summary, RocMLMs overcome practical limitations for
emulating dynamic phase changes in numerical simulations
of mantle convection

Training dataset Reqgression alqorithm 20eMLMS are 101-10° fimes

faster than GFEM programs and
Lookup Tables

RocMLMs trained with Neural
Networks are more efficient
compared to other regression
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good agreement with PREM
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mantle geotherm
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