
Introduction

Methods

Results

Conclusions

RocMLMs: Predicting Rock Properties through Machine Learning Models
Buchanan Kerswell1, Nestor G. Cerpa1, Andréa Tommasi1, Marguerite Godard1, José Alberto Padrón-Navarta2

1Geosciences Montpellier, University of Montpellier, CNRS, 34095 Montpellier, France, 2Instituto Andaluz de Ciencias de la Tierra (IACT), CSIC, 18100 Armilla (Granada), Spain

Computational efficiency of various approaches in terms of prediction speed (a) and model size (b). “Capacity” (x-axis) is a 
proxy for the petrological “knowledge”, or predictive capabilities, of Lookup Tables and RocMLMs. The white region in (a) 
indicates GFEM prediction speed for different Perple_X configurations (thermodynamic dataset, chemical system, and number 
of solution phases are indicated in square brackets). GFEM model size is constant (bold black line). stx21: Stixrude and Lithgow-
Bertelloni (2022), hp633: Holland and Powell (2011) updated in Holland et al. (2018). Perple_X was run without multilevel grid 
refinement. RMSE is measured using kfold cross-validation with k=5.
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RocMLMs predict density and elastic properties 
of dry mantle rocks with high accuracy and are 
up to 101–103 faster than commonly used 
methods: Lookup Tables and Perple_X

Depth profiles of RocMLM training data along a 1573 K mantle adiabat showing the sensitivities of thermodynamic estimates of 
density (a), Vp (b), and Vs (c) to changes in bulk mantle composition (as represented by the Fertility Index, ξ). Geophysical 
profiles PREM and STW105 (green lines) and the profiles of synthetic mantle end-member compositions PSUM and DSUM (thick 
colored lines) are shown for reference. Thin colored lines show profiles for the entire range of RocMLM training data.

Computational efficiency of various approaches in terms of prediction speed (a) and model 
size (b). “Capacity” (x-axis) is a proxy for the petrological “knowledge”, or predictive 
capabilities, of Lookup Tables and RocMLMs. The white region in (a) indicates GFEM 
prediction speed for different Perple_X configurations (thermodynamic dataset, chemical 
system, and number of solution phases are indicated in square brackets). GFEM model 
size is constant (bold black line). stx21: Stixrude and Lithgow-Bertelloni (2022), hp633: 
Holland and Powell (2011) updated in Holland et al. (2018). Perple_X was run without 
multilevel grid refinement. RMSE is measured using kfold cross-validation with k=5.

PC1-PC2 diagrams showing the standardized geochemical dataset of natural peridotite 
samples (a) and a mixing array between hypothetical end-member mantle compositions 
Primitive Synthetic Upper Mantle (PSUM) and Depleted Synthetic Upper Mantle (DSUM, b). 
Black arrows in (a) indicate PCA loading vectors. Colored data points in (b) are the 
synthetic mantle compositions used to train RocMLMs, which were sampled 
independently from the natural peridotite samples (gray data points). The inset (c) shows 
how the Fertility Index (ξ) changes nonlinearly with PC1. DMM, PUM, and PYR are Workman 
and Hart (2005), Sun and McDonough (1989), and Green (1979), respectively.

➢ Phase transformations strongly impact mantle convection
➢ Lookup Tables and GFEM programs like Perple_X are effective 

at implementing phase changes, but too slow for high-
resolution geodynamic simulations

➢ We developed RocMLMs to emulate dynamic phase changes 
instead of using Lookup Tables or GFEM programs

➢ We hypothesized that RocMLMs will be faster than Lookup 
Tables and GFEM programs, while maintaining accuracy

➢ RocMLM training data were designed to be relevant for 
convection in the dry upper mantle (1–28 GPa, 773–2273 K, 
lherzolite to harzburgite)

➢ 3111 natural peridotite samples were used to define a mixing 
array  between hypothetical mantle endmember compositions 
DSUM & PSUM

➢ 128 synthetic bulk compositions were sampled from the 
hypothetical mixing array for the RocMLM training dataset

➢ Different ML algorithms (DT, KN, NN1, NN2, NN3) were 
trained on 221 (~2.1M) phase equilibria calculations to 
predict density, Vp, and Vs at upper mantle PTX conditions

➢ RocMLMs are 101–103 times faster than Lookup Tables and 
Perple_X

➢ RocMLM training data show good agreement with PREM and 
STW105 for an average mantle geotherm

➢ RocMLM prediction speed makes thermodynamically self-
consistent mantle convection within high-resolution 
numerical geodynamic models practical for the first time

➢ RocMLMs trained with moderately deep (3 hidden layers) NNs 
are more robust and efficient compared other ML algorithms, 
and are therefore the most practical models for coupling with 
numerical geodynamic codes
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