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Introduction A significant lack of markers recovered near 2 GPa

" interface behavior, but small samplo sizes of and 550°C contrasts with high frequencies of
exhumed HP rocks make statistical inference weak natural Samples near thlS PT Condition %
 Inferring rates and distributions of rock recovery S 0

from subduction zones with statistical robustness
IS possible by tracing markers in geodynamic 4
numerical models
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Example of marker classification. (a) Pressure-temperature (PT) diagram showing marker clusters as assigned by
Gaussian mixture modeling (GMM; colored PT paths). (b) PT diagram showing marker classification results (colored PT
paths) and various marker positions along their PT paths (black, white, and pink points).

* Classifying unlabeled markers as “recovered” or
“not recovered” using their pressure-temperature
(PT) traces defines an unsupervised classification
problem

distributions of PT modes and recovery rates
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* Gaussian Mixture Model (GMM) clusters markers
Into groups and assign labels to GMM groups

100
F§s
50
25

90
70
50

0 200 400 600 800 1000 600 1000 1400 1800
Results temperature ("C) distance (km)

* Markers show discrete multimodal PT distributions -
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* Across 64 numerical experiments with wide- — -
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Summary of marker recovery for model cda62. (a) Pressure-temperature diagram showing the frequency of recovered markers (black points and green Tanaka contours) in comparison with > O O OO0 X
are recovered from between 1.8 and 2.2 GPa and the pd15 (solid red contours) and ag18 (filled gray contours) data sets. Thin lines are thermal gradients labeled in °C/km. Reaction boundaries for eclogitization of oceanic crust and O ¢ O OO TO Z

475-625°C antigorite dehydration are from Ito and Kennedy (1971) and Schmidt and Poli (1998), respectively. Marker counts (Tanaka contours) are computed across a 100 x 100 grid
(0.04 GPa x 10°C). (insets) Probability distribution functions (top insets) and cumulative distribution functions (bottom inset) comparing P and T distributions between numerical experiments
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(green lines) and natural samples (pink lines: pd15, black lines: agl8). (b) Visualization of log viscosity in the model domain showing the major modes of marker recovery along a relatively

thick subduction interface that tapers near the viscous coupling depth. %
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Why might this gap occur? Four possibilities are around 2 GPa and 550 C might include: selective sampling s
considered: . . . . . .
of rocks (petrological bias), reaction overstepping (petrological
"
1. Numerical modeling uncertainties (e.g. rheology) : ) / 2 =
> Petrologic uncertainties (c.¢. modeling PT pathe) uncertainty), or recovery/exhumation processes that are not :
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