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ABSTRACT

Pressure-temperature (PT) estimates from exhumed high-pressure (HP)
metamorphic rocks and global surface heat flow observations evidently
encode information about subduction zone thermal structure and the
nature of mechanical and chemical processing of subducted materials
along the interface between converging plates. Previous work demon-
strates the possibility of decoding such geodynamic information by
comparing numerical geodynamic models with empirical observations
of surface heat flow and the metamorphic rock record. However, am-
bigous interpretations can arise from this line of inquiry with respect
to thermal gradients, plate coupling, and detachment and recovery of
subducted materials. This dissertation applies a variety of computa-
tional techniques to explore changes in plate interface behavior among
subduction zones from large numerical and empirical datasets. First,
coupling depths for 17 modern subduction zones are predicted after
observing mechanical coupling in 64 numerical geodynamic simulations.

Second, upper-plate surface heat flow patterns are assessed by applying
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two methods of interpolation to thousands of surface heat flow obser-
vations near subduction zone segments. Third, PT distributions of over
one million markers traced from the previous set of 64 subduction sim-
ulations are compared with hundreds of empirical PT estimates from
the rock record to assess the effects of thermo-kinematic boundary con-
ditions on detachment and recovery of rock along the plate interface.
These studies conclude the following. Mechanical coupling between
plates is primarily controlled by the upper plate lithospheric thickness,
with marginal responses to other thermo-kinematic boundary condi-
tions. Upper-plate surface heat flow patterns are highly variable within
and among subduction zone segments, suggesting both uniform and
nonuniform subsurface thermal structure and/or geodynamics. Finally,
PT distributions of recovered markers show patterns consistent with
trimodal detachment (recovery) of rock from distinct depths coinciding
with the continental Moho at 35-40 km, the onset of plate coupling at
80 km, and an intermediate recovery mode around 55 km. Together,
this work identifies important biases in geodynamic numerical models
(insufficient implementation of recovery mechanisms and/or heat gen-
eration/transfer), surface heat flow observations (poor spatial coverage

and/or oversampling of specific regions), and petrologic datasets (selec-
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tive sampling of metamorphic rocks amenable to petrologic modelling
techniques) that, if addressed, could significantly improve the current

understandings of subduction interface behavior.
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CHAPTER 1:

INTRODUCTION

Asnoted by Gerya (2014), a scarcity of observational constraints through
time and space makes the study of geodynamics on Earth extraordinar-
ily challenging (Figure 1.1). Fortunately, application of various compu-
tational approaches—simulation, interpolation, and applied statistics
(machine learning)—enable geodynamic inquiry despite sparse datasets.
This dissertation leverages the above computational methods to investi-
gate a fundamental component of Plate Tectonic theory, subduction.
Subduction occurs when two lithospheric plates converge and the
denser plate subducts beneath the other at a subduction zone. Subduc-
tion zones drive many geodynamic phenomena, including plate motions,
seismicity, metamorphism, volatile flux, volcanism, and crustal deforma-
tion (Cizkova & Bina, 2013; Gao & Wang, 2017; Gonzalez et al., 2016; Grove
et al., 2012; Hacker et al., 2003; Hirauchi et al., 2010; Peacock, 1990, 1991,

1993, 1996; Peacock & Hyndman, 1999; van Keken et al., 2011). These phe-
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Figure 1.1: The Geodynamicist’s dilemma. Time-depth diagram representing the
data availability on Earth. The rock record (red circles) encodes information about
geodynamic processes throughout Earth’s history, but only within approximately
100 km of Earth’s surface. Geophysical data (blue circles) provide images of Earth’s
deep interior, but only since the 20th century CE (or 10~7 Ga). Direct observations
(green circle) are limited to the present-day surface. Size of the circles represents the
abundance of available data. Reprinted from Gerya (2014) with permission.



nomena are largely defined by plate motions and mechanical behavior
along the interface between the subducting plate and overriding (upper)
plate (Furukawa, 1993; Peacock et al., 1994; Peacock, 1996). Important
thermo-kinematic boundary conditions exerting first-order control on
subduction zone geodynamics (plate velocity, subduction angle, plate
thickness, sediment thickness, crustal structure, subduction duration,
and others) vary considerably among presently active subduction zones
worldwide (e.g. Syracuse et al., 2010; Syracuse & Abers, 2006).

Intuition suggests diverse thermo-kinematic boundary conditions for
various subduction zone systems should influence mechanical behavior
differently along the plate interface. Yet previous work comparing sur-
face heat flow with numerical simulations of subduction argues for rather
uniform depths of plate coupling among subduction zones (Furukawa,
1993; Wada et al., 2008; Wada & Wang, 2009) and implies some aspects of
subduction zone mechanics are minimally affected by thermo-kinematic
boundary conditions. Compounding the ambiguity are global compila-
tions of PT estimates from exhumed HP metamorphic rocks that imply
detachment of subducting material is either rather continuous along
the plate interface (Agard et al., 2018; Penniston-Dorland et al., 2015)

or discontinuous (Agard et al., 2009, 2016; Groppo et al., 2016; Monie



& Agard, 2009; Plunder et al., 2015). Thus, the spatial variability (with
depth and along strike) of plate interface mechanics remains largely
unconstrained and difficult to quantify.

This dissertation is motivated by the following question. How can spa-
tial variations in plate interface mechanics be evaluated across a range
of subduction zones with currently available petrologic and geophysical
datasets? Each chapter focuses on quantifying an aspect of subduction
zone mechanics using different computational approaches and datasets.

Chapter 2 numerically simulates oceanic-continental subduction
across a range of thermo-kinematic boundary conditions. Plate coupling
is observed after 10 Ma and multivariate linear regression is then used to
formulate an expression for estimating coupling depth. The expression
requires estimates for upper-plate thickness, which can be inverted
from surface heat flow. Average upper-plate surface heat flow for
13 presently active subduction zones yield a narrow distribution of
coupling depths.

Chapter 3 takes a closer look surface heat flow by quantifying its spa-
tial variability across large adjacent regions (sectors) in the upper-plate.
Two interpolations methods, Kriging and Similarity, are compared to

assess differences in their surface heat flow predictions near 13 subduc-



tion zone segments. Kriging and Similarity accuracies are comparable
on average and both approaches show lateral (along strike) surface heat
flow variability in the upper-plate. Discontinuous upper-plate surface
heat flow implies nonuniform thermal structure and/or discontinuous
geodynamics.

Finally, Chapter 4 applies machine learning techniques to recognize
detachment of subducting markers (representing rock fragments) from
the numerical simulations in Chapter 2. A large (119,146) PT dataset
of recovered markers is compared across numerical experiments and
with global compilation of PT estimates for rocks exhumed from sub-
duction zones (the rock record, Agard et al., 2018; Penniston-Dorland
et al., 2015). Marker PT distributions are distinct from the rock record
for most numerical simulations, except for slowly-converging systems
(40 km/Ma) with young oceanic plates (< 55 Ma) and thin upper-plate
lithospheres. A sizeable gap in marker recovery around 2 GPa and 550 °C,
closely coinciding with the highest density region of natural samples,
implies certain biases may be affecting numerical geodynamic models,

the rock record, or both.



CHAPTER 2:
EFFECTS OF THERMO-KINEMATIC
BOUNDARY CONDITIONS ON PLATE

COUPLING IN SUBDUCTION ZONES

2.1 Abstract

Deep mechanical coupling between converging plates is implicated in
dynamic plate motions, crustal deformation, seismic cycles, arc magma-
tism, detachment (recovery) of subducting material, and is considered
a key feature of subduction zone geodynamics. This study uses two-
dimensional numerical simulations of oceanic-continental convergent
margins to investigate effects of thermo-kinematic boundary condi-
tions on coupling—specifically focusing on thermal parameter (®) and
upper-plate thickness. Numerical simulations implement coupling by

including the metamorphic (de)hydration reaction antigorite < olivine +



orthopyroxene+ H,O in the upper-plate mantle. Visualizing PT-strain fields
show thermal feedbacks regulating coupling depth dynamically with
strong responses to upper-plate thickness and weak responses to .
The results imply estimation of coupling depth is possible by invert-
ing upper-plate thickness from surface heat flow. Moreover, surface
heat flow sampled from the backarc region near 17 presently active sub-
duction zones imply uniform upper-plate thickness, and thus uniform

coupling depths among subduction zones.

2.2 Introduction
Subduction geodynamics are largely defined by plate motions and me-
chanical behavior along the plate interface. For example, a transition
from mechanically decoupled (plates moving differentially with respect
to each other) to coupled plates (plates moving with the same local
velocity) dramatically increases temperature by inducing mantle circu-
lation in the upper-plate asthenospheric mantle (Peacock et al., 1994;
Peacock, 1996). Observations from numerical simulations and forearc
surface heat flow imply coupling transitions occur globally within a nar-
row range of depths in modern subduction zones (70-80 km). Further,
coupling appears essentially unresponsive to diverse thermo-kinematic

boundary conditions, including oceanic plate age, convergence velocity,



and subduction geometry (Furukawa, 1993; Wada et al., 2008; Wada &
Wang, 2009). While uniform coupling depths among subduction zones
are inferred from numerical simulations and surface heat flow, this phe-
nomenon remains curious and unconfirmed to a large extent. To under-
stand subduction zone geodynamics, it is essential to understand why
modern subduction zones appear to achieve similar coupling depths
despite differences in their physical characteristics.

Notwithstanding, many numerical geodynamic models use coupling
depths of 70-80 km as a boundary condition (Abers et al., 2017; Currie et
al., 2004; Gao & Wang, 2014; Syracuse et al., 2010; van Keken et al., 2011,
2018; Wada et al., 2012; Wilson et al., 2014), although not exclusively
(e.g. 40-56 km, England & Katz, 2010; Peacock, 1996). Similar coupling
depths among subduction zones is an attractive hypothesis for at least
two reasons. First, it helps explain a relatively narrow range of depths to
subducting oceanic plates beneath volcanic arcs (England et al., 2004;
Syracuse & Abers, 2006) as mechanical coupling is expected to be closely
associated with the onset of flux melting. Second, mechanical coupling
is required to detach crustal fragments from the subducting plate (Agard
et al., 2016), so uniform coupling depths may also help explain why

maximum pressures recorded by subducted oceanic material worldwide



is < 2.3-2.5 GPa (roughly 80 km, Agard et al., 2009, 2018).

The location and extent of mechanical coupling along the plate inter-
face is implicated in myriad geodynamic phenomena, including seismic-
ity, metamorphism, volatile flux, volcanism, plate motions, and crustal
deformation (CiZkova & Bina, 2013; Gao & Wang, 2017; Gonzalez et al.,
2016; Grove et al., 2012; Hacker et al., 2003; Hirauchi et al., 2010; Pea-
cock, 1990, 1991, 1993, 1996; Peacock & Hyndman, 1999; van Keken et
al., 2011). Consequently, the mechanics of coupling have been exten-
sively studied and discussed. Coupling fundamentally depends on the
strength (viscosity) of materials above, within, and below the plate inter-
face. Water flux from compaction and dehydration of hydrous minerals
with increasing PT forms layers of low viscosity sheet silicates near the
plate interface. Transmission of shear stress between plates is inhibited
by formation of talc and serpentine in the shallow upper-plate mantle
(Peacock & Hyndman, 1999). Lack of traction along the interface, com-
bined with cooling from the subducting plate surface, ensures a positive
feedback between hydrous mineral formation and mechanical decou-
pling. Experimentally determined flow laws, petrologic observations,
and geophysical observations all support the plausibility of this concep-

tual model of subduction interface behavior (e.g. Agard et al., 2016, 2018;
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Gao & Wang, 2014; Peacock & Hyndman, 1999).

Experimental control over important thermo-kinematic boundary
conditions make geodynamic numerical simulations essential for in-
vestigating such complex geodynamic environments. Wada & Wang
(2009) previously investigated the effects of ® on coupling depths by
numerically simulating 17 presently active subduction zones. Among
other thermo-kinematic boundary conditions, their models specify con-
vergence rate, subduction geometry, thermal structure of oceanic- and
overriding-plates, and degree of coupling along the subduction interface.
Notably, their experiments control for interface rheology and discrim-
inate best-fit coupling depths based on observed forearc surface heat
flow.

This study similarly specifies thermo-kinematic boundary conditions
to numerically simulate the range of modern subduction zone systems,
but regulates interface rheology dynamically by implementing meta-
morphic reactions that respond to evolving PT-strain fields. Subduction
geometry and coupling depth are not fully determined features, in other
words, but spontaneous model outcomes within the range of specified
boundary conditions discussed in Section 2.3. As in previous studies (e.g.

Ruh et al., 2015), rheological effects of the dehydration reaction antigorite
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& olivine + orthopyroxene + H,O are implemented to drive mechanical cou-
pling. An abrupt viscosity increase accompanies antigorite (serpentine)
destabilization, thereby inducing mechanical coupling, as defined by
empirically-determined flow laws used in the numerical experiments.
This chapter focuses on two fundamental questions. How does cou-
pling depth respond to ® and upper-plate thickness? And how stable is
coupling depth through time? First, 64 convergent margins with variable
upper-plate thickness and ® are numerically simulated and mechani-
cal plate coupling is observed. Thermal feedbacks within the system
are visualized in terms of mantle temperature, viscosity, and velocity
fields and coupling depth responses to a range of ® and upper-plate
thickness are quantified using multivariate linear regression. Three dif-
ferent regression models are then used to estimate coupling depths for
17 presently active subduction zones. Coupling depth estimates are
narrowly distributed, regardless of regression model form. Finally, im-
plications and questions regarding uniformity among subduction zones
in terms of surface heat flow, upper-plate thickness, and coupling depth

are discussed.
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2.3 Numerical Modelling Methods

This study simulates converging oceanic-continental plates, where an
ocean basin is being consumed by subduction at a continental margin
(Figure 2.1). Initial conditions are modified from previous numerical
experiments of active margins (Gorczyk et al., 2007; Sizova et al., 2010)
using the code 12vIs (Gerya & Yuen, 2003), although plate coupling was
not the focus of their studies. An identical rheologic model with identical
material properties (Table 2.1), and a identical hydration/melt model
(Table A.4 & Appendix A.3) to Sizova et al. (2010) are implemented. How-
ever, the version of 12vIs in this study differs from Sizova et al. (2010)
in its initial setup, overall dimension, resolution, continental geotherm,
dehydration model, and left boundary condition (origin of new oceanic
lithosphere). Differences are outlined in this section and in Appendix
A.3. Sixty-four 12vis models constructed with varying convergence rates
(v), oceanic plate ages, and upper-plate thickness (Figure 2.2) were ran

for at least 100 timesteps.
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Figure 2.1: Initial model configuration and boundary conditions. (a) A free sedimentation/erosion boundary at
the surface is maintained by implementing a layer of "sticky" air and water, and an infinite-like open boundary
at the bottom allows for spontaneous oceanic plate descent and subduction angle. Left and right boundaries are
free slip and thermally insulating. Initial material distribution includes 7 km of oceanic crust (2 km basalt, 5 km
gabbro), 1 km of oceanic sediments, and 35 km of continental crust, thinning ocean-ward. (b) Oceanic lithosphere is
continually created at the left boundary. The oceanic geotherm is calculated using a half-space cooling model and

the continental geotherm is calculated using a one-dimensional steady-state conductive cooling model to 1300 °C.

The base of the upper-plate lithosphere (7, p) is defined by visualizing viscosity and generally coincides with the
1100 °C isotherm. (c) Oceanic crust is bent under loading from passive margin sediments, and a weak zone extends
through the lithosphere to help induce subduction. Convergence velocities are imposed at stationary, high-viscosity
regions far from the trench. Rock type colors are: [1] air, [2] water, [4,5] sediments, [6,7] felsic crust, [8] basalt, [9]
gabbro, [10,11] dry mantle, [12] hydrated mantle, [14] serpentinized mantle.
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Table 2.1: Material properties used in numerical experiments

Material p H,0 Flow Law logipA E 1% n 1) Oerit ky ko ks H

kg/m® wt.% kJ/mol J/MPa-mol MPa pW/m?
sediments 2600 5.0 wet quartzite -3.5 154.0 3.0 2.3 0.15 0.03 0.64 807 4e-06 2.000
felsic crust 2700 wet quartzite  -3.5 154.0 3.0 2.3 045 0.03 0.64 807 4e-06 1.000
basalt 3000 5.0 plagan75 -3.5  238.0 8.0 3.2 045 0.03 1.18 474 4e-06 0.250
gabbro 3000 plag an75 -3.5  238.0 8.0 3.2 045 0.03 118 474 4e-06 0.250
mantle dry 3300 dry olivine 44  540.0 20.0 3.5 045 0.30 0.73 1293 4e-06 0.022
mantle hydrated 3300 0.5 wetolivine 3.3 430.0 10.0 3.0 045 0.24 0.73 1293 4e-06 0.022
serpentine 3200 2.0 serpentine 3.3 8.9 3.2 3.8 0.15 3.00 0.73 1293 4e-06 0.022

key: A: material constant, F, V: activation energy and volume, n: power law exponent, ¢: internal friction angle, o.;: critical
stress, ki-ks: thermal conductivity constants, H: heat production

constants: C,: heat capacity = 1 [kJ/kg], a: expansivity = 2x107° [1/K], 8: compressibility = 0.045 [1/MPa]

thermal conductivity: k [W/mK] = (k; + %) x exp(ks - P) with P in [MPa] and T in [K]

references: Turcotte & Schubert (2002), Ranalli (1995), Hilairet et al. (2007), Karato & Wu (1993)

174"
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2.3.1 Initial Setup and Boundary Conditions

Simulations are 2000 km wide and 300 km deep (Figure 2.1). In the
model domain, three governing equations of heat transport, momentum,
and continuity are discretized and solved with a conservative finite-
difference marker-in-cell approach on a fully staggered grid as outlined
in Gerya & Yuen (2003). Numerical resolution is nonuniform with higher
resolution (1 x 1 km) in a 600 km wide area surrounding the contact be-
tween the oceanic plate and continental margin, then gradually changing
to lower resolution towards the model boundaries (5 x 1 km, x- and z-
directions, respectively). The left and right boundaries are free-slip
and thermally insulating (Figure 2.1a, b). Implementation of “sticky” air
and water allows for a free topographical surface with a simple linear
sedimentation and erosion model. The lower boundary is open to allow
for oceanic plate descent with a spontaneous subduction angle (Burg &
Gerya, 2005).

A horizontal convergence force is applied to both plates in a rectangu-
lar region far from the continental margin (Figure 2.1c). An initial weak
layer cutting the lithosphere permits subduction to initiate. The high-
viscosity (n = 10% Pa - s) rectangular convergence regions apply constant

horizontal velocities without deforming the lithosphere. Subduction
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Figure 2.2: Range of thermo-kinematic boundary conditions used in numerical experi-
ments. (a) Thermal parameters (grayscale) range from 13 to 110 km/100 and broadly
reflect the distribution of oceanic plate ages and convergence velocities in modern
subduction zones. Model names include the prefix “cd” for “coupling depth” with
increasing alphabetic suffixes. Note that neither axes are continuous. (b) Upper-plate
thickness (Zy p) is defined by a range of continental geotherms. Geotherms were con-
structed using a one-dimensional steady-state conductive cooling model with T(z=0) =
0°C, @(z=0) =59, 63, 69, 79 mW/m?, and constant radiogenic heating of 1.0 yxW/m? for a 35
km-thick crust and 0.022 W/m? for the mantle. Continental geotherms are calculated
up to 1300 °C with a constant 0.5 °C/km gradient (the mantle adiabat) extending to the
base of the model domain.
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angle is governed by free-motion of the subducting plate. Similarly, sub-
duction velocity varies with time in response to extension or shortening
of the overriding plate. @ is thus calculated as the product of the horizon-
tal convergence velocity and the oceanic plate age (cf. Kirby et al., 1991,
McKenzie, 1969). For convenience and consistency with the literature,

this study presents ® in units of km/100 (Figure 2.2a).

2.3.2 Rheologic Model

Contributions from dislocation and diffusion creep are accounted for by

computing a composite rheology for ductile rocks, 7.;:

1 L1 2.1)

Neff B Ndiff  Tdisl

where n4¢ and nqg are effective viscosities for diffusion and dislocation
creep.

For the crust and serpentinized mantle, 7,;; and 74, are computed as:

IR E+PV
Naiff = 5 Ao exp =T
(2.2)
1 n -(1=n)/n E+ PV
Ndist = B AY 5§1 / exp {—nRT }

where R is the gas constant, P is pressure, T is temperature in K, &;; =

\/ 3¢5, 1s the square root of the second invariant of the strain rate tensor,
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o 18 an assumed diffusion-dislocation transition stress, and A, £, V
and n are the material constant, activation energy, activation volume,
and stress exponent, respectively (Table 2.1, Hilairet et al., 2007; Ranalli,
1995).

For the mantle, 7, and 74, are computed as (Karato & Wu, 1993):

1 R1™™ E+ PV
s =5 476 [5] o [

E+ PV
PN RT

(2.3)
L i o 2—n)/m
Ndisl = B} A Gepp

whereb=5 x 107 m is the Burgers vector, G = 8 x 10'° Pa is shear modulus,
h =1 x 1073 m is the assumed grain size, m = 2.5 is the grain size exponent,
and the other flow law parameters are given in Table 2.1. Viscosity is
limited in all numerical experiments from 7,,;,, = 10'7 Pa - s t0 7,4, = 10%°
Pa - s.

An effective visco-plastic rheology is achieved by limiting 7., with a
brittle (plastic) yield criterion:

C+éP
261

Neff < (2.4)

where ¢ is the internal friction coefficient, C' cohesive strength at P =0,

and ¢;; is the strain rate tensor (Table 2.1).
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2.3.3 Defining Geotherms and Lithospheric Thickness

Oceanic crust is modelled as 1 km of sediment cover overlying 2 km
of basalt and 5 km of gabbro (Figure 2.1a). Oceanic lithosphere is con-
tinually made at a pseudo-mid-ocean ridge at the left boundary of the
model (Figure 2.1b). An enhanced vertical cooling condition applied at
200 km from left boundary adjusts for the proper oceanic plate age, and
therefore its lithospheric thickness as it enters the trench (Agrusta et
al., 2013). Oceanic plate ages range from 32.6 to 110 Ma and convergence
velocities from 40 to 100 km/Ma (Figure 2.2a). This range of parameters
broadly reflects the middle-range of modern global subduction systems
(Syracuse & Abers, 2006).

Initial continental geotherms are determined by solving the heat flow
equation in one-dimension to 1300 °C (Figure 2.2b). This study assumes
a fixed temperature of O °C at the surface, constant radiogenic heating
of 1 yW/m? in the 35 km-thick continental crust, 0.022 yW/m? in the
mantle, with thermal conductivities of 2.3 W/mK and 3.0 W/mK for the
continental crust and mantle, respectively. Above, 1300 °C, temperature
is assumed to constantly increase by 0.5 °C/km (the mantle adiabat) to
the base of the model domain.

Many studies define the base of the continental lithosphere at the
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1300 °C isotherm, but it can be determined directly by visualizing vis-
cosity and strain rate as the model progresses. The mechanical base of
the lithosphere (7, ) in the models generally occurs near the 1100 °C
isotherm—characterized by a rapid decrease in viscosity and increase in
strain rate (Figures A.2, A.3, A.4). As such, this study considers oceanic
and continental lithospheres as mechanical layers defined by viscos-
ity, rather than defined merely by temperature. Z,» corresponding to
backarc surface heat flow of 59, 63, 69, and 79 mW/m? are used in this

study (Figure 2.2b).

2.3.4 Metamorphic (De)hydration Reactions

Using Lagrangian markers (Harlow, 1962, 1964) to store and update ma-
terial properties and PT-strain fields allows for straight-forward numer-
ical implementation of metamorphic reactions. This approach is key to
regulating mechanical coupling dynamically in subduction zone simu-
lations. For example, dehydration (eclogitization) of the oceanic plate
and (de)stabilization of serpentine in the upper-plate mantle may be
effectively modelled by tracing marker PT-time paths while changing
marker properties according to thermodynamically-stable mineral as-
semblages (e.g. Connolly, 2005). For computational efficiency, however,

water contents in this study are not computed by iteratively solving
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thermodynamic systems of equations.

Instead, gradual eclogitization of oceanic crust is computed as a lin-
ear function of lithostatic pressure to a maximum depth of 150 km, or
temperature of 1427 °C, while including garnet-in and plagioclase-out
reactions defined by Ito & Kennedy (1971). Mantle (de)hydration is com-
puted according reactions boundaries defined by Schmidt & Poli (1998)
with a maximum water content of 2 wt.% (explained below). This ap-
proach effectively simulates continuous influx of water to the upper-
plate mantle with relatively low computational cost, beginning with
compaction and release of connate water at shallow depths, followed
by a sequence of reactions consuming major hydrous phases (chlorite,
lawsonite, zoisite, chloritoid, talc, amphibole, and phengite) in different
parts of the hydrated basaltic crust (Schmidt & Poli, 1998; van Keken et
al., 2011).

The extent of metamorphic reaction effects on mechanical coupling,
and the exact (de)hydration reaction(s) likely responsible, are unknown.
However, formation of brucite and serpentine from dry olivine near the
plate interface are inferred to strongly regulate mechanical behavior
(Agard et al., 2016; Hyndman & Peacock, 2003; Peacock & Hyndman,

1999). Brucite notably breaks down at much lower temperatures than
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serpentine (Schmidt & Poli, 1998), so serpentine (de)stabilization ar-
guably represents the key transition from a weak-to-strong upper-plate
mantle deep in subduction zones. This study elects an implementation
of serpentine (de)hydration for this reason. The reaction is assumed to
be abrupt and discontinuous, which is a fine approximation for near-
endmember compositions like (Mg-rich) peridotites. The PT conditions
of the reaction antigorite < olivine + orthopyroxene + H,O were numerically

implemented by the following equation (after Schmidt & Poli, 1998):

751.50 4+ 6.008 x 10732 — 3.469 x 107822,  for z < 63000m
Tatgfout(z) = (2.5)

1013.2 — 6.039 x 10~°2 — 4.289 x 10—922, for z > 63000m

where 2 is the depth of a marker from the surface in meters and 7T is
temperature in Kelvins. This reaction boundary is consistent to within
25 °C of more recent experiments by Shen et al. (2015). Markers with
internal temperature exceeding T.;, ..:(z) Spontaneously form olivine +
orthopyroxene + H,O and release their crystal-bound water. This imple-
mentation tacitly assumes thermodynamic equilibrium and is common
to many versions of 12VIs.

Oceanic plates of different ages are also tacitly assumed to dehy-

drate similarly with the above implementation. However, older (colder)
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oceanic plates are expected to carry water to greater depths than younger
(warmer) plates because of relatively delayed water-releasing reactions
(Peacock, 1996). Abrupt water release with serpentine dehydration (Equa-
tion (2.5)) was tested to model deep water retention in cold oceanic plates.
Mechanical coupling behavior was indistinguishable from gradual water
release models. This implies rates of water release are less important
than the depth of serpentine stability. Explicitly modelling other major
dehydration reactions are thus unlikely to significantly affect mechani-
cal coupling behavior, yet likely to introduce numerical artifacts at great
computational cost. A simplified gradual water release model for all
oceanic plates is therefore preferred.

Water released by rock forms discrete fluid particles that migrate with
relative velocities defined by local deviatoric (non-lithostatic) pressure
gradients (see Appendix A.3, Faccenda et al., 2009). Fluid velocities are
scaled by a 10 cm/yr vertical percolation velocity to account for purely
lithostatic pressure gradients in the mantle (Gorczyk et al., 2007). Fluid
particles migrate until encountering rock that can consume additional
water by equilibrium hydration or melting reactions, (Equation A.4).

The shallow upper-plate mantle can theoretically store large amounts

of water as serpentine may contain up to 13 wt.% water (Reynard, 2013)
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and is generally stable at shallow mantle conditions. Thermodynamic
models predict 8 wt.% water in the shallow upper-plate mantle (Con-
nolly, 2005). However, seismic studies suggest most shallow upper-plate
mantles are only partially serpentinized (< 20-40%), equating to water
contents of approximately 3-6 wt.% (Abers et al., 2017; Carlson & Miller,
2003). Many modes of mantle hydration are documented or inferred,
including evidence for channelized fluid flow within ophiolites exhumed
from subduction zones (Angiboust et al., 2012a, 2014a; Plumper et al.,
2017; Zack & John, 2007). This study limits mantle wedge hydration to <
2 wt.% H,O and assumes any excess H,0O exits the system through chan-

nelized fluid flow during plastic or brittle deformation (Davies, 1999b).

2.3.5 Visualization and Determination of Coupling Depth

The rheologic model and thermo-kinematic boundary conditions de-
scribed in the previous sections always results in plate motions towards
the left boundary (slab-rollback). Relatively high dip angles and ex-
treme subduction velocities in some high-® experiments cause chaotic
behavior by 10 Ma as the upper-plate is stretched thin and mechanical
interference occurs between trench sediments and the high-viscosity
convergence region 200 km from the left boundary. Numerical solutions

are stable for most experiments, however, reaching quasi-steady state by
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5 Ma. An additional 5 Ma is allowed to ensure stable geodynamics before
observing coupling depth. Surface heat flow, rock type, temperature,
viscosity, strain rate, shear heating, and velocity fields are visualized
at approximately 10 Ma (e.g. Figure 2.3) for all 64 experiments to assess
geodynamics and solution stability (Figure A.1).

After approximately 10 Ma of subduction coupling depth is deter-
mined directly from viscosity by finding the approximate area where
strength contrasts between serpentinized- and non-serpentinized upper-
plate mantle diminishes to < 10? Pa - s. The node nearest to this region is
assigned as the coupling depth. This study assumes mechanical coupling
occurs instantaneously and at a single node. Mechanical coupling in
reality must be dispersed across a finite length along the plate interface,
however. At the numerical resolution the experiments, coupling-like
viscosity contrasts are similar within a small area (approximately 5 x 5
km or 5 x 5 nodes), giving a qualitative uncertainty coupling depth on

the order of 2.5 km.
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Figure 2.3: Visualizing model cdf with a 78 km upper-plate lithosphere at approxi-
mately 10 Ma. (a) Rock type shows a thin serpentine layer (pink) lubricating the plate
interface. Note that low melt volumes are inconspicuous and quickly extracted. (b)
Viscosity shows high contrast between the oceanic plate and serpentinized upper-plate
mantle at shallow levels. Viscosity contrast disappears where serpentine becomes
unstable. (c) Streamlines show focused mantle flow towards the interface, coinciding
with the lower limit of serpentine stability. Note the converging isotherms that imply a
feedback between heat transfer, serpentine destabilization, and mechanical coupling.
(d) Strain rate shows localized deformation in the serpentine layer along the plate
interface. Note that deformation in the upper-plate mantle is restricted to viscous flow
beneath the lithosphere and along narrow, subvertical melt conduits. Rock type colors
are the same as Figure 2.1.
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2.4 Results

2.4.1 Coupling Depth Estimators

Coupling depth (Z.,) correlates strongly with upper-plate thickness (7 p)
and weakly with & across all 64 numerical models (Table A.3, Figures
A.6 & A.7). The responsiveness of coupling depth to Z;» but not to @ is
a key result of this study. The following equation minimizes standard
least squares while optimizing the number of parameters, p value, and
R? for all possible permutations of the variables Z;p and @ in linear and

quadratic forms:

e =495 x107° Zp — 92T x 1072 ® + 63.6 (2.6)

where 7, is coupling depth in km and ¢ is the thermal parameter in
km/100. Regression summaries show both linear and quadratic models of
Z.n V8. Zyp and @ fit experimental results well (Tables A.1 & A.2). Equation
(2.6) represents a statistical model formulated with observations from
physics-based simulations of subduction. Equation (2.6) is useful for
estimating coupling depths in active subduction zones where ® is known

and Z;p can be inverted from surface heat flow.
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Table 2.2: Estimated coupling depths for active subduction zones

Segment q Zuyp P Z8, 2, ZS,
mW/m?> km km/100 km km km

N. Cascadia 75 74.2 34 92 91 90
Nankai 69 96.3 6.9 107 109 110
Mexico 72 98.1 7.2 108 111 112
Columbia-Ecuador 80 664 104 86 84 84
S.C. Chile 80 66.4 200 85 84 83
Kyushu 69 83.2 135 97 97 96
N. Sumatra 120 26.8 25.0 57 65 68
Alaska 80 66.4 253 85 83 82
N. Chile 85 58.7 384 78 77T 77
N. Costa Rica 80 58.5 204 80 79 78
Aleutians 75 51.6 39.6 73 73 73
N. Hikurangi 80 58.5 41.0 178 77 76
Mariana 80 47.5 546 69 70 70
Kermadec 80 475 60.0 68 69 70
Kamchatka 70 80.2 770 89 88 88
Izu 80 47.5 77.0 67 68 68
NE Japan 88 47.7 1079 64 65 65

a: Zcpl =Zyp + (I), b: Zcpl = Z%P + &, c: Zcpl = Zyp + Z%P + &
references: Currie & Hyndman (2006), Wada & Wang (2009)

Sensitivity of coupling depth to upper-plate thickness and & is appar-
ent when visualizing Equation (2.6) and other regression models across
Zyp and @ space 2.4. Applying Equation (2.6) to 17 active subduction zone
segments (Table 2.2) gives a wide range of estimated coupling depths,
similar to the numerical simulations in this study. The distribution of es-
timated coupling depths, however, is relatively narrow and quasi-normal,

with a mean of ~ 82 km and standard deviation of 7 km (Figure 2.4d).
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Figure 2.4: Multivariate regressions and estimated coupling depth (Z.,) for 17 ac-
tive subduction zone segments. Contoured plots show estimated Z.,, (contours) as a
function of thermal parameter (®) and upper-plate thickness (Zy p) for linear (a) and
quadratic (b, c) regressions. The best fit regression is panel b (Equation (2.6), see Tables
A.1 and A.2). Black squares are numerical experiments used to fit the contours. White
points represent active subduction zones (Table 2.2). Contours imply Z., depends
strongly on Z; . While some estimated Z., for subduction zones with similar ¢ are
quite different (e.g. Alaska vs. N. Sumatra), some estimated Z.,,; are quite similar for sub-
duction zones with very different @ (e.g. Kamchatka vs. N. Cascadia). (d) Distributions
of estimated Z.,, for 17 active subduction zones shown in (a), (b), and (c). These 17 seg-
ments span a large range of ® but are expected to have a relatively narrow distribution
of Z.,; (82 + 14 km) according to the regressions in (a), (b), and (c).
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2.4.2 Surface Heat Flow

Upper-plate surface heat flow remains relatively stable and reflects ini-
tial upper-plate geotherms in the backarc region for experiments with
low to moderate ® (Figure A.5). However, high-amplitude and high-
frequency positive surface heat flow deviations in the upper-plate are
common in all experiments, especially for high-® experiments. These
deviations correspond to extensional deformation and heat transport
via lithospheric thinning and melt migration. These features are appar-
ent as subvertical low viscosity, high strain rate columns originating
from the plate interface (Figure 2.3b, d) and point to potential sources
of error when inverting surface heat flow in active subduction zones.
Notably, the backarc is relatively unaffected by fluid and melt migration
compared to the forearc. Estimating upper-plate thickness by inverting
surface heat flow in the backarc is therefore preferable to forearc surface
heat flow.

Surface heat flow across all numerical experiments is similar in the
forearc region (normalized distance < 0.75, Figure 2.5). In contrast, sur-
face heat flow extending behind the arc region (normalized distance >
0.75, Figure 2.5) increases systematically, then levels off at values re-

flecting initial continental geotherms (i.e. reflecting initial upper-plate
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thickness). In reality, surface heat flow depend on fault slip rates and
rates of volcanic outputs. However, heat flow in the behind the arc
may remain in steady-state if rates of volcanism and crustal thinning by

extension are low (Currie et al., 2004; Currie & Hyndman, 2006).

2.5 Discussion

2.5.1 Dynamic Feedbacks Regulating Plate Coupling

A clear association between plate coupling and the reaction antigorite
& olivine + orthopyrozene + H,O is observed in all experiments. A relatively
narrow serpentine channel quickly forms above the dehydrating oceanic
plate, localizing strain, lubricating the plate interface, and inhibiting
transfer of shear stress between plates (e.g. Agard et al., 2016; Ruh et
al., 2015). This mechanical behavior is a direct consequence of a sharp
rheologic change dependent on the location of serpentine dehydration
reaction described in Section 2.3.4 and its effect on the rheologic model
described in Section 2.3.2. Interactions among viscosity changes, serpen-
tine dehydration, and heat transfer are regulated by competing dynamic
feedbacks acting in the upper-plate. In summary, cooling and hydration
of the shallow upper-plate mantle (serpentine stabilization) and heating

from circulating asthenospheric mantle beneath the upper-plate litho-
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Figure 2.5: Surface heat flow (¢) vs. normalized distance for model cdf with upper-
plate thickness (Zyp) ranging from 46 to 94 km. The distribution of 7in the forearc
(normalized distance between 0.0 and 1.0) is narrow and shows little variance until near
the arc (normalized distance between 0.75 and 1.0). The broad distribution of ¢ behind
the arc (normalized distance > 1.0) reflects the broad distribution of initial continental
geotherms (Zyp). Any simple relationship between ¢ and Zyp may be obscured by
heating from extension or vertical migration of fluids, especially within the arc-region
(high-amplitude fluctuations).
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sphere (driven by mechanical coupling) compete to stabilize coupling
depth (Figure 2.6).

The entire process can be conceptualized with Figure 2.6 as follows.
The upper-plate mantle cools via diffusive heat loss to the oceanic plate
along the entire length of the plate interface (Figure 2.6a). At shallow
depths, water released from the oceanic plate stabilizes serpentine in
the overriding upper-plate mantle, effectively decoupling the two plates
(Figure 2.6b, point a). A positive feedback stabilizes serpentine to greater
depths as decoupled plates stagnate the upper-plate mantle, promoting
further cooling and formation of serpentine. Numerical experiments
imply only a thin layer of serpentine is sufficient to trigger this feedback.

Deeper along the plate interface, beyond the stability of serpentine,
diffusive heat loss from the upper-plate mantle to the slab forms a thick-
ening layer of high-viscosity mantle atop the oceanic plate (Figure 2.6b,
point b). Downward motion of the oceanic plate, plus accreted high-
viscosity mantle (Figure 2.6b, point b) relative to the deepest extent
of the stiff upper-plate mantle (Figure 2.6b, point c) creates a pressure
gradient that attracts flow of the weakest materials—serpentine from
the up-dip direction (Figure 2.6b, point d)—and hot mantle from below

(Figure 2.6b, point e). Flow of hot mantle into the necking region be-
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Figure 2.6: Visualizing viscosity and mantle flow near the coupling region at approx-
imately 10 Ma for model cdf with upper-plate thickness of 78 km. (a) Temperature
field. (b) Strong mantle flow beneath the lithospheric base (1100°C) transfers heat
towards the coupling region. Viscosity indicates coupling at the point where the vis-
cosity contrast between the slab and mantle approaches zero (between points b & d).

Reference points a-e are used for discussing coupling dynamics and thermal feedbacks
(see Section 2.5.2).
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tween points b and c in Figure 2.6 is analogous to passive asthenospheric
upwelling toward a mid-ocean ridge where two strong cooling litho-
spheric plates diverge. Highly efficient heat advection from the warm
upper-plate asthenospheric mantle (Figure 2.6a) prevents formation of
sperentine—thus regulating and stabilizing the coupling depth.
Coupling mechanics apparent from numerical experiments can be
described in terms of competing positive and negative feedbacks. The
positive feedback involves addition of water into a diffusively cooling,
shallow mantle to produce serpentine. The negative feedback involves
serpentine destabilization by advection of heat from the deeper upper-
plate asthenospheric mantle. Such thermal-petrologic-mechanical feed-
backs drive coupling depth towards steady-state. The numerical experi-
ments in this study imply a finely-tuned balance of serpentine stability
can maintain coupling depths in subduction zones for potentially 10’s of

Ma.

2.5.2 Coupling Responses to 7;;» and ¢

How does upper-plate thickness influence coupling depth? Numeri-
cal experiments point to the upper-plate lithosphere-asthenosphere
boundary as an important feature constraining coupling mechanics as it

defines the permissible flow field in the upper-plate (Figure 2.7a-d). Thin
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upper-plate lithospheres (Figure 2.7a, b) permit shallow mantle flow
and advection of heat farther up the plate interface. Thin upper-plate
lithospheres thereby raise coupling depths by raising serpentine stabil-
ity up the plate interface. Thick upper-plate lithospheres (Figure 2.7c,
d) restrict mantle wedge flow to deeper levels, deepening serpentine
stability and mechanical coupling.

The thermal state of the slab, as represented by ®, has almost no effect
on coupling depth by comparison. Relative insensitivity of coupling
depth to @ is consistent with previous studies of active subduction zones
(Furukawa, 1993; Wada & Wang, 2009). The irresponsiveness of coupling
depth to changes in @ is perhaps due to competing cooling and heating
effects driven by the subducting oceanic plate. For example, high-®
oceanic plates (older plates with higher velocities) cool the upper-plate
mantle more effectively, but also effectively heat the interface by driving
stronger mantle circulation. In contrast, low-® oceanic plates (younger
plates with lower velocities) are less effective in cooling the upper-plate
mantle, but also ineffectively heat the interface by ineffectively driving
mantle circulation. That is, the shallow vs. deep dynamic effects of ®
tend to cancel each other, explaining the lack of correlation between

coupling depth and .
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2.5.3 Estimating Coupling Depths in Subduction Zones

Theoretically, coupling depth can be estimated directly by fitting forearc
surface heat flow data using forward modelling approaches (e.g. Wada &
Wang, 2009). However, forward approaches typically adjust coupling
depth independently from upper-plate thickness, which is inconsistent
with an inherent link between coupling depth and upper-plate thick-
ness discussed in Section 2.5 (e.g. Figures 2.5 & 2.7). Moreover, many
additional heat sources (e.g. shear heating and crustal plutonism, Gao &
Wang, 2014; Rees Jones et al., 2018) may contribute to forearc surface
heat flow—increasing uncertainty when inverting upper-plate thickness
from surface heat flow.

Assuming low degrees of backarc extension, estimating coupling
depth in active subduction zones using Equation (2.6) with Z;» inverted
from backarc surface heat flow is preferable to avoid additional uncer-
tainties stemming from seismic and volcanic activity in the forearc. How-
ever, while @ is inventoried for most active subduction zones (Syracuse &
Abers, 2006), a corresponding dataset of Z;;» does not exist. Several geo-
physical and petrologic methods might be considered for independent
estimates of Z;p (e.g. seismic velocities, flexure, heat flow, mantle xeno-

liths). Backarc surface heat flow is still a good choice, however, because
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of its direct correspondence with Z;p». For example, Z;p may be esti-
mated using simple one-dimensional heat transport models assuming
values for radiogenic heat production in the crust (Rudnick et al., 1998).
Special attention must be paid to crustal processes, including extension
and magmatism, because additional heating will underestimate Z;» and,

consequently, underestimate coupling depth.

2.5.4 Globally Similar Coupling Depths?

A Z,, distribution of 82 + 14 km (20) estimated for active subduction zones
in this study (Figure 2.4d) roughly match the preferred 7, inferred from
forearc surface heat flow for Cascadia and NE Japan (75-80 km, Syracuse
et al., 2010; Wada & Wang, 2009) km. The range of 7., estimated for
active subduction zones in this study (Figure 2.4d) is relatively broad,
however. For example, omitting Mexico and Nankai because their ¢ val-
ues fall outside the range of ® used for numerical experiments, estimated
coupling depths range from almost 100 km (Kyushu) to approximately
65 km (Sumatra and NE Japan, Table 2.2).

Coupling depth in active subduction zones are commonly assumed
to be narrowly distributed around 70-80 km (Syracuse et al., 2010; Wada
& Wang, 2009). The strong correlation between Z;» and Z., found from

numerical experiments imply uniform coupling depths are possible
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Figure 2.7: Visualizing mantle flow at approximately 10 Ma for model cdf with upper-
plate thickness of (a) 46, (b) 62, (c) 78, and (d) 94 km. All experiments are plotted on

the same scale and locatlon within the model domain. The flow of warm mantle is
restricted to below the 1100°C isotherm, which corresponds to the base of the upper-

plate lithosphere (Zy p). A minimum couphng depth (Z.,)) appears to exist as models
with extremely thin lithospheres (a) exhibit coupling at ~ 70-80 km depth. Z.,,; generally
increases with increasing Zy p as mantle flow and advective heat transport are restricted
to greater depths.
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if upper-plate thickness are globally uniform. The surface heat flow
dataset compiled by Wada & Wang (2009) (Table 2.2) shows average
backarc surface heat flow are indeed similar among active subduction
zones—implying a narrow distribution of coupling depths (Figure 2.44d).
Much of their dataset is based on Currie & Hyndman (2006), who esti-
mate upper-plate thickness for 10 circum-Pacific subduction zones of
50-60 km (defined by the 1200 °C isotherm). Uniformly thin upper-plate
thickness are corroborated by uniformly high heat flow (> 70 mW/m?),
thermobarometric constraints on mantle xenoliths, and P-wave veloci-
ties (Currie & Hyndman, 2006). An attempt is made to further corroborate
the uniformity of upper-plate thickness in Chapter 3 by interpolating
surface heat flow near active subduction zones.

Although it still curious why upper-plates among subduction zones
may have similar thicknesses, one can assume it is likely related to some
processes of lithospheric erosion proposed for subarc lithosphere. These
include: lithospheric delamination induced by lower crust eclogitization
(Sobolev & Babeyko, 2005), small-scale convection caused by hydration-
induced mantle wedge weakening (Arcay et al., 2006), thermal erosion
(England & Katz, 2010), mechanical weakening by percolating melts

(Gerya & Meilick, 2011), and subarc foundering of magmatic cumulates
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(Jull & Kelemen, 2001). Most of these mechanisms are thus strongly
related to mantle wedge hydration, melting, and melt transport toward
volcanic arcs.

The metamorphic rock record may also imply consistency among
coupling depths in subduction zones. For example, the demise of a
serpentine channel and onset of coupling may provide a natural barrier
such that rocks are more likely to be exhumed from within the channel
than from below it. The relative abundance of blueschists and eclogites
should then be greater for pressures below estimated coupling depths

(approximately 2.4 GPa or 70-80 km) than above them.

2.6 Conclusions

Three important results are highlighted in this study:

1. Coupling depth is stabilized near the base of the upper-plate litho-
sphere by competing dynamic feedbacks regulating heat transport,
serpentine dehydration, and mechanical coupling in the upper-
plate mantle.

2. A simple expression fitted to coupling depths observed in numerical
experiments allows the coupling depths to be estimated for active

subduction zones by inverting upper-plate thickness from surface
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heat flow.
3. Uniform surface heat flow in circum-Pacific subduction zones (Cur-
rie & Hyndman, 2006; Wada & Wang, 2009) may indicate uniform

coupling depths at approximately 80 km.

Questions remain, however, including: how do warm (thin) upper-
plates persist over 100’s of kilometers behind arcs and throughout the
lifespan of subduction zones? How abruptly are dehydration reaction
occurring along the subduction interface? How can expressions like
Equation (2.6) be improved using natural datasets? Each of these ques-

tions may be considered for future research.
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CHAPTER 3:
A COMPARISON OF SURFACE HEAT
FLOW INTERPOLATIONS NEAR

SUBDUCTION ZONES

3.1 Abstract
The magnitude and spatial extent of heat fluxing through the Earth’s sur-
face depend on the integrated thermal state of Earth’s lithosphere (con-
ductive heat loss) plus heat generation (e.g. from seismic cycles and ra-
dioactive decay) and heat transfer via advection (e.g. by fluids, melts, and
plate motions). Surface heat flow observations are thus critically impor-
tant for understanding the thermo-mechanical evolution of subduction
zones. Yet evaluating regional surface heat flow patterns across tectonic
features remains difficult due to sparse observations irregularly-spaced

at distances from 10! to 10® km. Simple sampling methods (e.g. 1D
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trench-perpendicular transects across subduction zones) can provide
excellent location-specific information but are insufficient for evalu-
ating lateral (along-strike) variability. Robust interpolation methods
are therefore required. This study compares two interpolation meth-
ods based on fundamentally different principles, Similarity and Krig-
ing, to (1) investigate the spatial variability of surface heat flow near 13
presently active subduction zone segments and (2) provide insights into
the reliability of such methods for subduction zone research. Similarity
and Kriging predictions show diverse surface heat flow distributions
and profiles among subduction zone segments and broad systematic
changes along strike. Median upper-plate surface heat flow varies 25.4
mW/m? for Similarity and 42.4 mW/m? for Kriging within segments, on
average, and up to 40.7 mW/m? for Similarity and up to 90.5 mW/m?
for Kriging among segments. Diverse distributions and profiles within
and among subduction zone segments imply spatial heterogeneities in
lithospheric thickness, subsurface geodynamics, or near-surface pertur-
bations, and/or undersampling relative to the scale and magnitude of
spatial variability. Average accuracy rates of Similarity (28.8 mW/m?) and
Kriging (32.2 mW/m?) predictions are comparable among subduction

zone segments, implying either method is viable for subduction zone
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research. Importantly, anomalies and methodological idiosyncrasies
identified by comparing Similarity and Kriging can aid in developing
more accurate regional surface heat flow interpolations and identifying

future survey targets.

3.2 Introduction
The amount of heat escaping Earth’s surface depends on the integrated
thermal state of Earth’s lithosphere, plus heat-transferring and heat-
generating subsurface processes like hydrothermal circulation, radioac-
tive decay, fault motion, and mantle convection (Currie et al., 2004;
Currie & Hyndman, 2006; Fourier, 1827; Furlong & Chapman, 2013; Fu-
rukawa, 1993; Gao & Wang, 2014; Hasterok, 2013; Hutnak et al., 2008;
Kelvin, 1863; Kerswell et al., 2021; Parsons & Sclater, 1977; Pollack &
Chapman, 1977; Rudnick et al., 1998; Stein & Stein, 1992, 1994; Wada &
Wang, 2009). Surface heat flow observations are thus critically impor-
tant for understanding lithospheric evolution, crustal deformation and
seismic hazards, groundwater hydrology and environmental impacts,
and exploration of economic resources (e.g. hydrocarbon, mineral, and
geothermal energy). Monumental efforts to take tens of thousands of
continental and oceanic surface heat flow measurements (from more

than 1000 individual studies) and compile them into databases (Hasterok
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& Chapman, 2008; Jennings et al., 2021; Lucazeau, 2019; Pollack et al.,
1993) enable multi-disciplinary investigations of lithospheric and crustal
processes.

The most recent global surface heat flow database, ThermoGlobe (Jen-
ningsetal., 2021; Lucazeau, 2019), currently contains 69,729 observations.
Yet the spatial coverage near subduction zones is relatively sparse (n =
13,360 for this study) and highly irregular at the regional scale (10? to 10°
km, see Figure 3.1 & Table B.2). Note that ThermoGlobe includes many
datasets of high-resolution surface heat flow arrays, often collocated
with seismic arrays, that span < 10? km in total length. While high-
resolution surveys can resolve fine spatial variations in surface heat flow
at the study site scale, probing surface heat flow variations along a sub-
duction zone segment requires evaluation of ThermoGlobe data across
larger-scales. Thus, the primary challenge in quantifying segment-scale
surface heat flow variations is evaluating sparse, irregularly-spaced ob-
servations separated by distances from 10~! to 10® km. This study solves
the problem of irregularly-spaced data by (1) independently applying
two interpolation methods to ThermoGlobe data near subduction zone
segments, and then (2) regularly sampling the interpolated surface heat

flow across large adjacent regions in the upper-plate (upper-plate sec-
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tors).

The two interpolation methods compared in this study, Kriging and
Similarity, are chosen because they represent end-member approaches
based on fundamentally different principles and mathematical frame-
works. Their comparative differences, therefore, may be important for
understanding lithospheric thermal structure, identifying surface heat
flow anomalies, evaluating practical limitations of each approach, and
developing new methods combining the strengths of Kriging and Simi-

larity techniques.
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Figure 3.1: Regional surface heat flow near subduction zone segments. (a) ThermoGlobe
data from Lucazeau (2019) cropped within 1000 km-radius buffers around 13 active
subduction zone segments show uneven regional coverage. For example, note the
relatively high observational density in the NW Pacific compared to other regions. (b) In
contrast, a Similarity interpolation cropped within the same buffers presents an evenly-
distributed approximation of regional surface heat flow. Similarity interpolation from
Lucazeau (2019). Subduction zone boundaries (bold white lines) defined by Syracuse
& Abers (2006). Plate boundaries (bold black lines) defined by Lawver et al. (2018).
AA: Alaska Aleutians, AN: Andes, CA: Central America, KM: Kamchatka Marianas, KR:
Kyushu Ryukyu, LA: Lesser Antilles, NBS: New Britain Solomon, NP: N Philippines,
SBS: Sumatra Banda Sea, SC: Scotia, SP: S Philippines, TNZ: Tonga New Zealand, VN:
Vanuatu.
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The rationale for applying Kriging and Similarity methods is embod-

ied in the First and Third Laws of Geography, respectively:

Three Laws of Geography:

1. Everything is related, but nearer things are more related
(Krige, 1951; Matheron, 1963)

2. Geographic phenomena are inherently heterogeneous
(Goodchild, 2004)

3. Localities with similar geographic configurations share other attributes
(Zhu et al., 2018)

Generally speaking, the spatial continuity of surface heat flow re-
flects variations in lithospheric thermal structure and heat-transferring
processes (neglecting variations in radiogenic heat production). For
example, broad regions of low surface heat flow on continents outline
cratons (Nyblade & Pollack, 1993), anomalously low surface heat flow
in oceanic crust implies significant heat extraction by seawater (Fisher
& Becker, 2000; Hasterok et al., 2011; Hutnak et al., 2008; Stein & Stein,
1994), and trench-orthogonal surface heat flow profiles imply uniform
upper-plate lithospheric thickness (Currie et al., 2004; Currie & Hyn-
dman, 2006; Hyndman et al., 2005) and mechanical coupling depths
(Furukawa, 1993; Kerswell et al., 2021; Wada & Wang, 2009) among sub-

duction zones. For Kriging, such patterns and anomalies may be resolved
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(assuming adequate observational coverage) because Kriging estimation
is inherently dependent on the spatial continuity of observed surface
heat flow.

In contrast, Similarity may impose different patterns than Kriging be-
cause the method only depends on the similarity between two localities
in terms of their geographic configuration (the makeup and structure of
geographic variables over some spatial neighborhood around a point,
Zhu et al., 2018). Rather than interpolating (sensu stricto) like Kriging,
Similarity predicts surface heat flow by comparing geographic, geo-
logic, geochronologic, and geophysical information between a target
point and the entire ThermoGlobe dataset (see Goutorbe et al., 2011 for
method details). In other words, Similarity predictions are fundamen-
tally geologically-reasoned estimates of surface heat flow. For exam-
ple, two localities have similar surface heat flow if they have similar
bathymetry, lithology, proximity to active or ancient orogens, seafloor
age, upper mantle shear wave velocity, etc. (Chapman & Pollack, 1975;
Davies, 2013; Lee & Uyeda, 1965; Lucazeau, 2019; Sclater et al., 1970a;
Shapiro & Ritzwoller, 2004).

This study compares regional Similarity and Kriging interpolations

near 13 presently active subduction zones while considering the follow-
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ing questions: (1) how does surface heat flow vary near subduction zones,
especially within the upper-plate? (2) How do Kriging and Similarity
predictions compare? (3) What do the differences (if any) imply about
geodynamic variability among active subduction zones? First, ordinary
Kriging is applied to ThermoGlobe data near 13 presently active sub-
duction zone segments (defined by Syracuse & Abers, 2006). Kriging
predictions are then directly compared (point-by-point) to Similarity
predictions from a previous global-scale study by Lucazeau (2019). In-
terpolation comparisons yield a variety of upper-plate surface heat flow
distributions and profiles. Potential implications of mixed upper-plate
profiles are discussed, especially with respect to uniform lithospheric
thickness (e.g. Currie et al., 2004; Currie & Hyndman, 2006; Hyndman et

al., 2005).

3.3 Methods

3.3.1 The ThermoGlobe Database

The ThermoGlobe database is available from the supplementary mate-
rial of Lucazeau (2019) and is accessible online at http://heatflow.org
(Jennings et al., 2021). It currently contains 69,729 data points, their

locations in latitude/longitude, and important metadata—including a
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data quality rank (Code 6) from A (high-quality) to D (low-quality). Lu-
cazeau (2019) and http://heatflow.org provide details on compilation,
references, historical perspective on ThermoGlobe, and previous compi-
lations. ThermoGlobe is the most recent database available, has been
carefully compiled, and is open-access.

Like Lucazeau (2019), 4,661 poor quality observations (Code 6 =D), 350
data points without heat flow observations, and 2 without geographic
information were excluded from the analysis. Note that quality control
of such a large dataset is an ongoing endeavor and 11,712 observations
currently have an undetermined quality (Code 6 = Z). Duplicate obser-
vations at the same location were parsed (to avoid singular covariance
matrices during Kriging) by selecting only the best quality measurement.
If duplicate measurements were of equal quality, one was randomly cho-
sen. Finally, surface heat flow observations for Kriging and Similarity
predictions were both limited to the range (0 - 250] mW/m?. Observa-
tions outside of the range (0 - 250] mW/m? are considered anomalous
(e.g. collected near geothermal systems, Lucazeau, 2019) and unrepresen-
tative of lithospheric-scale thermal structure. Anomalous observations
constitute a small fraction of measurements (4,883 out of 69,729) forming

long tails on either side of the global surface heat flow distribution. The
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final dataset used for Kriging contains 13,360 observations after filtering
for quality, missing values, and heat flow range, parsing duplicate pairs,

and cropping within subduction zone buffers (Figure B.16 & Table B.2).

3.3.2 Map Projection and Interpolation Grid

All geographic operations, including transformation, cropping, Kriging,
and comparing interpolations, were performed using general-purpose
functions in the R package sf (Pebesma, 2018). ThermoGlobe data and
Similarity interpolations from Lucazeau (2019) were transformed into a
Pacific-centered Robinson coordinate reference system using the open
source geographic transformation software PrR0OJ (PROJ contributors,
2021). The transformation is defined by the proj4 string "+proj=robin
+lon_0=-155 +lon_wrap=-155 +x_0=0 +y_0=0 +ellps=WGS84 +datum=WGS84

+units=m +no_defs". The Kriging domains were defined by drawing 1000
km-radius buffers around each subduction zone segment defined by
Syracuse & Abers (2006). Target locations for Kriging (the interpolation
grid) were defined across the same grid used by Lucazeau (2019) to
compute point-by-point differences with their Similarity interpolation
(Figure 3.2). In this case, grid point locations represent the centroids of

0.5° x 0.5° unequal-area grid cells encompassing the entire globe.
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Figure 3.2: Example of an interpolation domain constructed around the Sumatra Banda
Sea segment. ThermoGlobe data (colored squares; from Lucazeau, 2019) are cropped
within a 1000 km-radius buffer (thin black line) surrounding the segment boundary
(bold white line). Target locations for interpolation are defined by the intersections of a
0.5° x 0.5° grid (fine black mesh; defined by Lucazeau, 2019) cropped to the same buffer.
Note that Sumatra Banda Sea is one of the more densely sampled regions, yet still has
considerable observational gaps. Segment boundary and volcanoes (gold diamonds)
defined by Syracuse & Abers (2006). Plate boundaries (bold black lines) defined by
Lawver et al. (2018). AUP: Australian Plate, PSP: Philippine Sea Plate, SNP: Sunda Plate.
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3.3.3 Kriging

Kriging is derived from the theory of regionalized variables (Matheron,
1963, 2019) and estimates an unknown quantity as a linear combination
of all nearby known quantities. Kriging is a three-step process that in-
volves: 1) estimating an experimental variogram 4(h) that characterizes
the spatial continuity of some quantity within the Kriging domain, 2)
fitting one of many variogram models (%) to the experimental variogram,
and 3) directly solving a linear system of Kriging equations to predict
unknown quantities at arbitrary target locations (Cressie, 2015; Krige,
1951). The general-purpose functions defined in the R package gstat
(Graler et al., 2016; Pebesma, 2004) were used to perform all three Krig-
ing steps. The first step computed an experimental variogram (after

Bardossy, 1997):
|

> [2Z(w) = Z(u))
N(r) (3.1

h = Ju; — u;]
where Z(u;) and Z(u;) are observations located at «; and u; separated
by a lag of h, and N(h) is the number of observations separated by a
given lag distance. The experimental variogram 4(h) evaluates the spatial

continuity of the set of observations Z(u) by computing the average
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variance among pairs of observations separated by increasingly greater
lag distances. By convention the average variance is halved and called
“semivariance”.

For regularly-spaced data, lag distances are simply multiples of the
grid-step distance, but irregularly-spaced data must be treated differ-
ently. In the case of irregularly-spaced surface heat flow in this study, a
binwidth ¢ was defined as:
max(h) (ngg + shift)

Niqg CUl (3.2)
N(h) =#{h € [h—6, h+6)}

5:

where max(h) is the maximum separation distance within the Kriging
domain, n,,, is the number of lags used to evaluate the variogram, shift is
a lag shift constant that shifts the variogram by an integer number of
binwidths, cut is a lag cutoff constant (by convention cut = 3). N(h) is the
number of observations that fall within [h — §, h +9).

This study applied ordinary Kriging with isotropic variogram models
(assumes semivariance is spatially invariant) to surface heat flow data
projected onto a smooth sphere (neglects elevation). Kriging was applied
locally (to avoid violating stationarity assumptions) by evaluating only

the nearest n,,,, observations at each target location, where “nearest” is
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defined by the distances between the target location and observations.
Therefore, the domain of local Kriging expands or shrinks depending on
the local observational density at each target location.

Several variogram parameters influence the Kriging result, including
the choice of variogram model, the scope of local Kriging n,,.., and choice
of experimental variogram parameters in Equation (3.1). Instead of choos-
ing Kriging parameters by eye (a common practice for fitting variograms)
this study used a constrained non-linear optimization approach to find
optimum values for the variogram parameters {model, 1oy, cut, npmaz, shift}.
A weighted sum of the root mean square error (RMSE) evaluated during
variogram fitting and the RMSE evaluated between Kriging estimates
and surface heat flow observations was used as a cost function to si-
multaneously optimize variogram and Kriging accuracy (after Li et al.,
2018). The R package nloptr was used to optimize Kriging parameters
by finding a combination of the parameters {model, nju,, cut, Nmaz, shift}
that minimizes the cost function. A full description of the Kriging sys-
tem of equations, underlying assumptions, and optimization methods
is presented in Appendix B.1 with optimization results for all segments
and variogram models. All experimental and fitted variograms are in

Appendix B.4 with interpolations for each case not presented in the main
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text.

3.3.4 Upper-Plate Sector Profiles

Surface heat flow profiles and distributions were computed for sev-
eral adjacent upper-plate regions to assess lateral (along-strike) surface
heat flow variability. Profiles were defined by (1) splitting a subduction
zone segment (defined by Syracuse & Abers, 2006) into 2-14 equidistant
parts, (2) defining 500 km-wide single-sided buffers (sectors) around
the segment parts, and (3) calculating the orthogonal great circle dis-
tance between each surface heat flow prediction (Similarity and Kriging),
or observation (ThermoGlobe data), contained within a sector and the
segment boundary (trench). Steps (1-3) above closely approximate the
projection of surface heat flow onto a 1D trench-orthogonal line at the
center of each sector (e.g. Currie et al., 2004; Currie & Hyndman, 2006;
Hyndman et al., 2005; Morishige & Kuwatani, 2020; Wada & Wang, 2009).
Profiles were smoothed by a three-point running average and fit with
a local non-parametric regression curve (LOESS, Cleveland & Devlin,

1988).

3.3.5 Interpolation Accuracy

Previous studies evaluate global Similarity accuracy by either applying

cross-validation during the interpolation process (e.g. Goutorbe et al.,
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2011) or directly computing residuals between predictions and surface
heat flow observations after interpolation (e.g. Lucazeau, 2019). Gener-
ally speaking, ranking models by comparing cross-validation results is
typically preferred over directly comparing residuals for two reasons:
(1) cross-validation gives a sense of how a model behaves when pre-
sented with new data (not part of the training data set used to fit the
model), and (2) cross-validation can distinguish models that are overfit
(high-accuracy due to “memorizing” the training data set). However,
because Similarity is a non-parametric approach that does not involve
“fitting” models to sets of training data (i.e. no residuals or cost function
to minimize), cross-validating Similarity predictions does not effectively
distinguish overfitting, nor does it give a sense of how well Similar-
ity will behave when presented with new data. Similarity, as typically
implemented (e.g. by Goutorbe et al., 2011; Lucazeau, 2019), always con-
siders the entire global dataset of surface heat flow observations to make
predictions at unknown target locations. Therefore leaving out a few
observations has little effect. For example, even removing an entire con-
tinent’s worth of surface heat flow data does not significantly affect the
outcome of Similarity predictions compared to Similarity interpolations

including the full ThermoGlobe dataset (see Figure 9 in Lucazeau, 2019).
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To better compare Kriging (a parametric model fit to training data)
and Similarity (a non-parametric model with prescribed weights), this
study computed interpolation accuracies using a direct approach (sim-
ilar to Lucazeau, 2019) for both methods. More specifically, the RMSE
was computed for each surface heat flow observation by comparing the
observed value to the nearest predicted value made across the 0.5° x
0.5° interpolation grid. Compared to cross-validation, this direct method
provides a more robust and effective comparison between Similarity
and Kriging accuracies. However, the direct approach is particularly
susceptible to ignoring overfitting during Kriging estimation. Therefore
caution must be taken to avoid misinterpreting unusually low Kriging

error rates as indication of a more accurate model.

3.4 Results

3.4.1 Similarity and Kriging Interpolations

Global Differences

Global differences between Similarity and Kriging interpolations across
all subduction zone segments are centered near zero with median dif-
ferences ranging from -1 to 14 mW/m?, but broadly distributed with

interquartile ranges (IQRs) from 15 to 50 mW/m? and long tails extending
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from -1000 to 205 mW/m? (Table B.3). Distributions of interpolation dif-
ferences are either approximately symmetrical, or slightly right-skewed
(Figure B.17). Slight right skew and positive median differences indicate
a general tendency to predict higher surface heat flow by Similarity com-
pared to Kriging. However, much of the right skew can be explained by
spreading centers, transform faults, and volcanic regions predicted by
Similarity that are unresolved by Kriging due to lack of observations in
those regions (e.g. Scotia), and/or regions of anomalously-low surface
heat flow within oceanic crust resolved by Kriging that are effectively

overlooked by Similarity (e.g. Central America).

Regional Differences

Examples given in this section highlight the range of differences ob-
served between Similarity and Kriging interpolations across subduction
zone segments with anomalously-low surface heat flow within oceanic
crust (Central America), with complex tectonic boundaries (Vanuatu),
with excellent observational coverage (Kyushyu Ryukyu), and with very
few observations (Scotia). Refer to Appendix B.4 for the remaining set of

visualized interpolations.
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Central America Distance to plate boundaries and the age of oceanic
lithosphere are key geologic proxies exerting strong influence on Simi-
larity predictions (Goutorbe et al., 2011; Shapiro & Ritzwoller, 2004; Stein
& Stein, 1992). Consequently, Similarity predicts high surface heat flow
along the arms of the Galdpagos triple junction and within the (young)
converging Cocos Plate near Central America (Figure 3.3). Kriging, on the
other hand, predicts relatively low surface heat flow within the Cocos
Plate despite its young age and close proximity to the nearby spread-
ing centers. This is explained by anomalously-low surface heat flow
observed within the Cocos Plate that is interpreted as regional modifica-
tion of the expected surface heat flow by hydrothermal circulation of
seawater (Hutnak et al., 2008). These widespread observations of low
surface heat flow constrain Kriging predictions to similarly low values
within the Cocos Plate. Disagreement between Similarity and Kriging ap-
pears more subdued within the upper-plate, yet Similarity still predicts

slightly higher surface heat flow on average.

Vanuatu The interpolation domain near Vanuatu is characterized by
complex tectonic boundaries defining several microplates to the east
of the volcanic arc (Figure 3.4). The resolution of the geologic proxy

datasets used to construct Similarity predictions (namely oceanic plate
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Figure 3.3: Similarity and Kriging interpolations for Central America. (a) Relatively
high surface heat flow is predicted by Similarity within the young Cocos Plate (CP) and
along the arms of the Galdpagos triple junction (GTJ): the East Pacific Rise (EPR) and
Cocos Ridge (CR). In contrast, (b) many anomalously-low surface heat flow observations
within the CP (Hutnak et al., 2008) constrain Kriging predictions to low values. Segment
boundary (bold white line) and volcanoes (gold diamonds) defined by Syracuse & Abers
(2006). Similarity interpolation from Lucazeau (2019). Plate boundaries (bold black
lines) defined by Lawver et al. (2018).
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age, upper mantle density anomaly, sediment thickness, and distance
to tectonic boundaries) is apparently too coarse to distinguish a small
microplate near the northern tip of the Vanuatu segment from the New
Hebrides, Balmoral Reef, and Conway Reef microplates. According to
Similarity, the entire region is comprised of young oceanic plate with thin
sediment cover, and thus is predicted to have uniformly-high surface
heat flow. In contrast, excellent observational coverage enables Kriging
to clearly distinguish the northern microplate as an anomalously-low
surface heat flow region compared to the other microplates. Outside
the cluster of microplates, Kriging predicts lower surface heat flow on

average—similar to many other segments.

Kyushu Ryukyu The interpolation domain near the Kyushu Ryukyu
segment is characterized by a complex juxtaposition of active subduc-
tion and volcanism on the margins of the Philippine Sea Plate, and active
rifting between the Ryukyu arc and the Eurasian continent (the Okinawa
trough, Minami et al., 2022). Contrasting oceanic plate ages, topog-
raphy/bathymetry, sediment thickness, volcanic activity, and active
tectonic settings (subduction vs. rifting) consequently produce a very
textured distribution of Similarity predictions throughout the Kyushu

Ryukyu domain (Figure 3.5). For example, Similarity predictions clearly
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Figure 3.4: Similarity and Kriging interpolations for Vanuatu. While (a) Similarity
predicts more-or-less uniformly-high surface heat flow within the region defined by
many microplates, (b) excellent observational coverage allows Kriging to distinguish
the most northern microplate from the New Hebrides Plate (NHP), Balmoral Reef (BR),
and Conway Reef (CWR) microplates to the S. The geologic proxy datasets used to
construct Similarity interpolations are apparently too coarse to resolve microplate-
size features in this case. Segment boundary (bold white line) and volcanoes (gold
diamonds) defined by Syracuse & Abers (2006). Similarity interpolation from Lucazeau
(2019). Plate boundaries (bold black lines) defined by Lawver et al. (2018).
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show the influence of multiple volcanic arc chains, plate boundaries,
and the age of the subducting oceanic lithosphere. Geologic complexity
notwithstanding, excellent coverage of surface heat flow observations
throughout the domain enable Kriging predictions to resolve much of the
texture predicted by Similarity. Regional Similarity and Kriging differ-
ences are small and narrowly distributed near Kyushu Ryukyu (median
difference: 4, IQR: 21 mW/m?) as compared, for example, to Central Amer-
ica (median difference: 12, IQR: 50 mW/m?; Table B.3) despite having a
comparable number of observations (n = 1,895) as Central America (n =
1,441). While Kriging predictions are smoother overall, both interpola-
tions appear to corroborate each other, especially to the NE of the main

Kyushu Ryukyu segment boundary.

Scotia The Scotia segment illustrates a case where surface heat flow
observations are extremely sparse. Yet Similarity predicts multiple tec-
tonic featuresincluding the East Scotia Ridge and the WSW-ENE trending
transform boundary separating the Scotia and Sandwich Plates from the
Antarctic Plate (Figure 3.6). Combinations of geologic proxy datasets
enable Similarity to resolve these features despite having very few ob-
servations within the interpolation domain. Kriging, on the other hand,

shows a high heat flow anomaly more or less in the region of the East
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Figure 3.5: Similarity and Kriging interpolations for Kyushyu Ryukyu. (a) Similarity
predicts a textured interpolation that is strongly influenced by multiple volcanic chains
along the margins of the Philippine Sea Plate (PSP), contrasting oceanic plate ages, and
active rifting in the Okinawa trough (OKT). (b) The Kriging interpolation is generally
smoother, but corroborates much of the same texture predicted by Similarity due to
relatively high observational density and regularity of observational coverage through-
out the domain. Segment boundary (bold white line) and volcanoes (gold diamonds)
defined by Syracuse & Abers (2006). Similarity interpolation from Lucazeau (2019).
Plate boundaries (bold black lines) defined by Lawver et al. (2018).
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Scotia Ridge, and a few low heat flow anomalies on the Antarctic Plate,
but does not resolve any structure in a way that is geologically useful.
Few surface heat flow observations (n = 25) result in smooth Kriging
predictions that approximate the expected mean value (79 mW/m?) for

most of the domain according to Equation (B.3).

Upper-Plate Sector Samples

Sampling the interpolation grid and ThermoGlobe data from adjacent
upper-plate sectors allows for first-order quantitative evaluation of the
along-strike variability in upper-plate surface heat flow. However, Ther-
moGlobe data within sectors are often too few (n < 20 observations for
59/100 sectors; Table B.5) to compare distributions confidently with
other sectors. Therefore, this study compares trench-orthogonal pro-
files of the dense, regularly-spaced Similarity and Kriging predictions.
Generally speaking, distributions of Similarity and Kriging predictions
in the upper-plates show a range of overlap and appear to fluctuate
systematically across adjacent upper-plate sectors for some subduc-
tion zone segments. Moreover, Similarity and Kriging predictions reveal
a variety of upper-plate surface heat flow profiles within and among

subduction zone segments (Table B.5, Figures 3.7, 3.8, 3.9 & Appendix
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Figure 3.6: Similarity and Kriging interpolations for Scotia. Despite extremely sparse
data (n = 25), (a) Similarity identifies two tectonic features, the East Scotia Ridge (ESR)
and a transform fault (TF) separating the Scotia and Sandwich Plates (SP, SAN) from
the Antartic Plate (AP). (b) Kriging predicts a high heat flow anomaly in the region of
the ESR, and a few low heat flow anomalies in the AP, but otherwise appears featureless
due to sparse data. Segment boundary (bold white line) and volcanoes (gold diamonds)
defined by Syracuse & Abers (2006). Similarity interpolation from Lucazeau (2019).
Plate boundaries (bold black lines) defined by Lawver et al. (2018).
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B.5).
Below are three examples of subduction zone segments that illustrate

part of the range of observed upper-plate surface heat flow patterns.

Kyushu Ryukyu Kyushu Ryukyu characterizes a subduction zone seg-
ment with relatively consistent upper-plate surface heat flow for thou-
sands of km along-strike. In this case, consistent refers to comparable
Similarity and Kriging predictions and consistent surface heat flow dis-
tributions across sectors. That is, medians and IQRs of Similarity and
Kriging predictions overlap relatively well across most sectors—differing
by only 6.4 + 10.2 mW/m? for medians and 19.9 + 34 mW/m? for IQRs, on
average (Table B.5 & Figure 3.7). Upper-plate surface heat flow, as esti-
mated by Kriging, appears to increase systematically from the NE to SW
across sectors 8-6 before leveling out through sectors 5-1.

Meanwhile, ThermoGlobe data within Kyushu Ryukyu upper-plate
sectors (n = 339) vary considerably. Wide distributions of ThermoGlobe
data appear near the trench and at approximately 200 km from the trench,
coinciding with the young active rifting in the Okinawa trough (Figure
3.7). Yet, smoothed trench-orthogonal Similarity and Kriging profiles
gently arc through the approximate midrange of ThermoGlobe data.

Profile shapes are consistent across sectors and show relatively little
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spread (< 25 mW/m?). All profiles gradually rise from approximately
50 mW/m? at the trench to maximums of approximately 75-100 mW/m?
before gradually decreasing to approximately 75 mW/m? at 500 km into

the upper-plate.

Sumatra Banda Sea Sumatra Banda Sea characterizes a subduction
zone segment with moderately consistent upper-plate surface heat flow
for thousands of km along-strike. In this case, moderately consistent
refers to mostly comparable (overlapping) Similarity and Kriging pre-
dictions that distinctively fluctuate in a similar manner across sectors.
That is, medians and IQRs of Similarity and Kriging predictions overlap
well for some sectors, but not others (e.g. sectors 1, 10, & 11, Figure 3.8).
Median Similarity and Kriging predictions differ by 10.7 + 14.2 mW/m?
on average, and IQRs differ by 17.3 + 61.2 mW/m? on average across all
sectors (Table B.5). Similarity and Kriging predictions appear to broadly
oscillate between higher and lower surface heat flow across adjacent
sectors with a wavelength on the order of several sectors (103 km).
Meanwhile, Similarity and Kriging profiles show obvious differences.
For example, Similarity predictions are distributed narrowly and increase
monotonically from the trench to 500 km into the upper-plate, whereas

Kriging profiles generally ramp up more steeply and begin to disperse
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Comparing heat flow interpolations by sector
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Figure 3.7: Surface heat flow profiles for Kyushu Ryukyu upper-plate sectors. (a)
Similarity and Kriging predictions across sectors are largely indistinguishable with
overlapping medians and IQRs (boxes). (b) Profiles are computed by finding orthogonal
distances between the segment boundary (i.e. the trench, bold black line) and 342
surface heat flow predictions within eight 500 km-wide sectors (colored polygons).
Profiles (colored curves with 95% confidence intervals) are remarkably consistent across
sectors for (c) Kriging and (d) Similarity predictions. Colored squares are ThermoGlobe
data from Lucazeau (2019). Segment boundary and volcanoes (gold diamonds) defined
by Syracuse & Abers (2006). Plate boundaries (bold black lines) defined by Lawver

et al. (2018). Profile curves in (c) are LOESS regressions through three-point running
averages (small colored data points).
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at approximately 200 km from the trench. Similarity profiles remain
narrowly distributed through at least 300 km from the trench, whereas
Kriging profiles show up to 25-30 mW/m? spread among sectors at 300-

500 km from the trench.

New Britain Solomon New Britain Solomon characterizes a subduction
zone segment with inconsistent upper-plate surface heat flow and poor
overlap between Similarity and Kriging predictions. Only one sector
(sector 8) shows overlapping IQRs of Similarity and Kriging predictions,
whereas all other sectors strongly diverge (Figure 3.9). For example, me-
dian Kriging predictions range by 21.4 mW/m? across all sectors, whereas
median Similarity predictions range by 42.7 mW/m?. Moreover, Similar-
ity and Kriging medians across all sectors differ by 32.4 + 50.2 mW/m? on
average. Notably, opposing wave-like oscillations between higher and
lower surface heat flow across adjacent sectors are observed in Similarity
and Kriging predictions.

Meanwhile, Similarity and Kriging profiles are obviously distinguish-
able. For example, Kriging profiles are smooth and closely parallel Ther-
moGlobe data, whereas Similarity profiles show higher average surface
heat flow (Figure 3.9). In contrast to flat Kriging profiles, high surface

heat flow regions along Similarity profiles clearly show the influence
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Comparing heat flow interpolations by sector
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Figure 3.8: Surface heat flow profiles for Sumatra Banda Sea upper-plate sectors.
(a) Similarity and Kriging predictions across sectors are moderately distinguishable
with mostly overlapping IQRs, except for sectors 1, 10, & 11 (boxes). (b) Profiles are
computed by finding orthogonal distances between the segment boundary (trench;
bold black line) and 870 surface heat flow predictions within ten 500 km-wide sectors
(colored polygons). Profiles (colored curves with 95% confidence intervals) of (c) Kriging
predictions show greater overall spread than (d) Similarity profiles (e.g. > 200 km from
the trench), implying nonuniform upper-plate surface heat flow across the segment.
Colored squares are ThermoGlobe data from Lucazeau (2019). Segment boundary and
volcanoes (gold diamonds) defined by Syracuse & Abers (2006). Plate boundaries (bold
black lines) defined by Lawver et al. (2018). Profile curves in (c) are LOESS regressions
through three-point running averages (small colored data points).
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of certain tectonic features (e.g. in sector 4, which intersects a volcanic
center and ridge segment). Moreover, small confidence intervals around
Kriging profiles suggest small uncertainties compared to Similarity. How-
ever, Kriging is determined to find the smallest variance solution by def-
inition and can easily overfit the small number (n = 9) of ThermoGlobe
data. Divergence between Similarity and Kriging predictions near New
Britain Solomon thus appear to be driven by methodological differences

and a tendency for Kriging to overfit small sample sets.

3.4.2 Optimum Kriging Parameters

Optimized Kriging parameters vary substantially from segment to seg-
ment (Table 3.1). However, despite a range of domain sizes, observational
densities, and diverse plate configurations, Kriging parameters converge
on solutions for all Kriging domains (Figure B.2) and show no systematic
correlation with cost, with the exception of a negative correlation with
the logarithm of the variogram model sill (Figure B.1). Differences in cost
are apparently explained by systematic regional differences in surface
heat flow distributions (i.e. differences in the constant terms o, and
omterp 1N EqQuation (B.8)) rather than sensitivity to any particular Kriging

parameter.



76

Comparing heat flow interpolations by sector
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Figure 3.9: Surface heat flow profiles for New Britain Solomon upper-plate sectors. (a)
Similarity and Kriging predictions across sectors are very distinguishable with non-
overlapping IQRs (boxes). (b) Profiles are computed by finding orthogonal distances
between the segment boundary (trench; bold black line) and 163 surface heat flow pre-
dictions within five 500 km-wide sectors (colored polygons). Profiles (colored curves
with 95% confidence intervals) of (c) Kriging predictions are lower and show a narrow
distribution compared to (d) Similarity profiles. Colored squares are ThermoGlobe
data from Lucazeau (2019). Segment boundary and volcanoes (gold diamonds) defined
by Syracuse & Abers (2006). Plate boundaries (bold black lines) defined by Lawver

et al. (2018). Profile curves in (c) are LOESS regressions through three-point running
averages (small colored data points).



Table 3.1: Optimum variogram models and interpolation accuracy

Segment Model Cut Lags Shift 7, Sill Range RMSEs RMSEy
(mW/m?)? km mW/m? mW/m?

Alaska Aleutians Bes 1.0 16.3 1.0 8 841 77 17.6 74.6
Andes Exp 1.6 20.8 8.5 12 4631 165 52.6 34.9
Central America Exp 49 21.2 3.9 12 4683 265 52.5 33.4
Kamchatka Marianas Sph 1.7 18.5 7.5 7 1787 1355 33.1 31.2
Kyushu Ryukyu Lin 3.2 19.8 3.3 8 1898 183 34.5 37.8
Lesser Antilles Lin 1.5 24.2 1.1 11 653 77 11.5 13.3
N Philippines Bes 1.4 18.3 1.0 8 1258 19 27.1 32.0
New Britain Solomon Lin 2.0 20.2 5.1 10 693 228 13.6 28.2
S Philippines Lin 3.2 29.0 1.0 5 1014 40 25.6 22.9
Scotia Sph 2.7 20.8 4.8 8 3655 1766 26.5 10.9
Sumatra Banda Sea Sph 6.6 21.0 5.1 13 10598 5850 18.0 20.4
Tonga New Zealand Lin 3.7 249 3.6 10 1293 321 24.1 23.8
Vanuatu Lin 1.2 204 2.6 11 2918 286 37.1 54.6

note: showing lowest-cost models from Table B.1

key: n,q: max point-pairs, RMSEs: Similarity accuracy, RM SEk: Kriging accuracy

LL
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3.4.3 Similarity and Kriging Error Rates

Regional Kriging error rates (ranging from 10.9 to 74.6 mW/m?) are very
similar to Similarity error rates from the same regions (ranging from
11.5 to 52.6 mW/m?, Table 3.1). Kriging errors can be relatively small
compared to Similarity for domains with high observational density
(e.g. Lesser Antilles; n = 3,008, ARMSE ;s =1.9) but relatively large where
observational density is comparatively low (Alaska Aleutians; n = 290,
ARMSE, s =57). The small Kriging error rate computed for Scotia (10.9
mW/m?) likely reflects overfitting of few (n = 25) observations. On av-
erage, Kriging error rates are 1.3 times Similarity error rates across all
segments. In comparison to previous work, regional Similarity error rates
for most subduction zone segments in Table 3.1 are much higher than
the 7 mW/m? Similarity error rate reported by Lucazeau (2019). However,
Similarity error rates in Table 3.1 are consistent with global Similarity
error rates computed by cross-validation on a 1° x 1° grid (from 11.6 to

29.0 mW/m~2) reported previously by Goutorbe et al. (2011).
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3.5 Discussion

3.5.1 Comparing Similarity and Kriging Interpolations

Comparing two independent interpolation methods has distinct advan-
tages for understanding subduction zone thermal structure and geody-
namics. For example, many cases of Similarity and Kriging predictions
corroborate known, expected, or predicted tectonic features. These in-
clude: (1) broad regions of low surface heat flow defining the oceanic
plate and forearc along the Kamchatka Marianas segment (Figure B.21),
(2) high surface heat flow anomalies defining the volcanic center and
transform fault separating the South American Plate and Caribbean
Plates near the Lesser Antilles Segment (Figure B.22), (3) the general
seafloor thermal structure near the N Philippines segment (Figure B.23),
(4) a broad region of high surface heat flow within the NW part of the
Sumatra Banda Sea segment upper-plate (Figure B.26), and (5) high sur-
face heat flow defining volcanic arc chains near the Kyushu Ryukyu
segment (Figure 3.5).

While corroboration of known or expected features is advantageous
when comparing independent interpolation methods, inconsistencies

between Similarity and Kriging predictions are equally valuable. For
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example, many cases of Similarity and Kriging predictions identify un-
expected or poorly resolved tectonic features. These include: (1) much
of the thermal structure along the Andes segment (Figure B.20), (2) the
location and extent of two spreading centers, the tip of a transform fault,
and the regional thermal structure of the Cocos Plate near the Central
America segment (Figure 3.3), (3) locations of plate boundaries near the
New Britain Solomon (Figure B.24) and Scotia segments (Figure 3.6), (4) a
large low surface heat flow anomaly near the Sumatra Banda Sea segment
(east of Borneo at approximately 120°E and 5°S, Figure B.26), (5) a high
heat flow anomaly defining a transform fault near the N tip of the Tonga
New Zealand segment (Figure B.27), and (6) the location of microplate
boundaries near the Vanuatu segment (Figure 3.4).

Such inconsistencies between Similarity and Kriging interpolations
identify tectonic features that either violate geologic proxy datasets,
violate local surface heat flow observations, lack sufficient observational
coverage to be resolved by Kriging, or are too fine-scale to be resolved by
geologic proxy datasets on a 0.5° x 0.5° grid. In any case, the above ex-
amples demonstrate the utility of comparing independent interpolation
methods in identifying relevant targets for future investigation and data

acquisition (discussed further below). Maps of regional interpolated
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surface heat flow prepared in this study (Section 3.4 and Appendices B.4
& B.5, or similar) therefore provide important context for subduction

zone research.

3.5.2 Comparing Upper-Plate Sectors

Issues with Irregularly-Spaced Data

Surface heat flow profiles in previous studies were computed with obser-
vations sampled from within a single sector (Currie et al., 2004; Currie &
Hyndman, 2006; Furukawa, 1993; Hyndman et al., 2005; Kerswell et al.,
2021; Wada & Wang, 2009). While extending a single-sector sampling ap-
proach to many adjacent sectors is simple to implement, inherent pitfalls
are immediately obvious when comparing ThermoGlobe data among sec-
tors. For example, the spatial density and regularity of ThermoGlobe data
within adjacent sectors can often be drastically different (e.g. compare
ThermoGlobe data counts across sectors from Central America, Sumatra
Banda Sea, and Tonga New Zealand in Table B.5). Fluctuating sample
sizes among upper-plate sectors can make statistical comparisons of
ThermoGlobe data equivocal. For instance, ThermoGlobe data are often
too few (n < 20 observations for 59/100 sectors, Table B.5) to compare
with statistical confidence. Many sectors (n = 10) have a single observa-

tion with a singular distribution (IQR = 0) or few observations spanning a
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large range (very large IQR). Many sectors encompass zero ThermoGlobe
data and therefore cannot be compared at all. In other words, sum-
mary statistics necessary for gauging the continuity of surface heat flow
among sectors (e.g. median, IQR, Table B.5) can be generally considered
unreliable for a majority of sectors.

The above limitation arising from sampling irregularly-spaced data
can be easily overcome by interpolation. That is because sampling a
regular interpolation grid allows for more consistent sample sizes and
spatial coverage across sectors. For example, many sectors defined in
this study have few ThermoGlobe data (n < 5 observations for 37/100
sectors, Table B.5), yet the average number of Similarity and Kriging
predictions within those same sectors is 51—about 10 times the sample
size on average. Surface heat flow variability among sectors is thus more
confidently and consistently evaluated with interpolations derived from

ThermoGlobe data, rather than from ThermoGlobe data directly.

Continuity of Upper-Plate Surface Heat Flow

How consistent and continuous is upper-plate surface heat flow within
and among subduction zone segments? While Similarity and Kriging

predictions show discontinuous upper-plate surface heat flow patterns
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for some segments (e.g. Andes, Lesser Antilles and Vanuatu, Figures
B.29, B.32 & B.37), other segments show rather continuous patterns
(e.g. Central America, Kamchatka Marianas, Kyushu Ryukyu, N Philip-
pines, Figures B.30, B.31, 3.7, B.33), and still other segments show mixed
patterns depending on the interpolation method (e.g. Alaska Aleutians,
New Britain Solomon, S Philippines, Sumatra Banda Sea, Tonga New
Zealand, Figures B.28, 3.9, B.34, 3.8, B.36). On the one hand, Similarity and
Kriging interpolations can show nearly identical profiles along-strike for
1000’s of km (e.g. Kamchatka Marianas, Kyushu Ryukyu, Sumatra Banda
Sea, Figures B.31, 3.7, 3.8). These segments demonstrate large-scale con-
tinuity in upper-plate surface heat flow and may imply spatially homo-
geneous lithospheric thermal structure and/or spatially homogeneous
heat-transferring dynamics (e.g. Currie et al., 2004; Currie & Hyndman,
2006; Furukawa, 1993; Kerswell et al., 2021; Wada & Wang, 2009). Alterna-
tively, continuous surface heat flow may reflect undersampling relative
to local spatial variability of surface heat flow. Moreover, most segments
show neither completely continuous nor discontinuous upper-plate sur-
face heat flow patterns (Table B.5).

Some segments show an apparent wave-like oscillation between

higher and lower surface heat flow across multiple adjacent upper-plate
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sectors. In the Sumatra Banda Sea segment (Figure 3.8), median
Similarity and Kriging predictions oscillate with a wavelength on the
order of 10 km (approximately 5-7 sectors). Such large-wavelength
oscillations may imply gradual along-strike variation in upper-plate
thickness, coupling depths, and/or lithosphere-asthenosphere geody-
namics. Near-surface perturbations probably do not significantly affect
large-scale oscillations because hydrothermal effects are expected to be
locally distributed in accordance with thin (< 400 m) sediment cover or

close proximity to seamounts (< 60 km, Hasterok et al., 2011).

Identifying Survey Targets

Ideal survey targets for future surface heat flow observations should
strive to simultaneously improve the spatial resolution and accuracy
of Similarity and Kriging methods. For Similarity geographic config-
urations of new survey targets (the geologic context) should have the
greatest diversity possible and should not overlap significantly with
already oversampled regions in the geologic proxy parameter space. For
example, numerous surface heat flow observations are located close
to oceanic ridge systems because of historically productive study sites

like Cascadia (western North America, e.g. Currie et al., 2004; Davis et
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al., 1990; Hyndman & Wang, 1993; Jennings et al., 2021; Korgen et al.,
1971; Wang et al., 1995). This biases Similarity predictions to look like
Cascadia—as all interpolation targets located near oceanic ridge systems
will adopt the same distribution of surface heat flow values measured
near Cascadia (and a few other densely sampled regions, Figure 3.10).
The same principle applies to any other geologic proxy variable sampled
heavily from selectively few regions. Oversampling within the geologic
proxy parameter space is dually undesirable when applying Similarity
because it adds elements of bias and spatial-dependence to a method
that is otherwise advantageous because of its spatial-independence.
For Kriging, ideal survey target sites should provide the most regu-
lar coverage over a region of interest (e.g. a particular subduction zone
segment). Evaluating surface heat flow distributions across upper-plate
sectors offers opportunities for discovering future survey targets by
identifying the least-constrained sectors. For example, segments with
the greatest Similarity-Kriging discrepancies among sectors tend to have:
(1) very few ThermoGlobe data (e.g. Alaska Aleutians, N Philippines, New
Britain Solomon, S Philippines), (2) highly-irregular spatial coverage of
ThermoGlobe data (e.g. Andes, Central America, Lesser Antilles), or (3)

complex upper-plate tectonics (Vanuatu). A simple query of the Ther-
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Figure 3.10: Global distribution of surface heat flow observations and distances to
ridges. (a, b) Maps showing the localities of surface heat flow observations and their
distances from ridges, and the complete global distribution of distances to ridges. (c)
Normalized density estimates comparing the relative coverage of surface heat flow
observations with the global distribution of distances from ridges. Differences in
density reveal regions of over- and undersampling within the geologic proxy parameter
space. Subduction zone boundaries (bold white lines) defined by Syracuse & Abers
(2006). Plate boundaries defined by Lawver et al. (2018). Global proxy data from
Goutorbe et al. (2011).
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moGlobe dataset by sector can identify individual sectors with low or
highly-irregular observational density or large Similarity-Kriging dis-
crepancies. Thus, current observational gaps in regional surface heat
flow can be efficiently identified by comparing independent interpola-

tion methods within multiple-sectors.

3.5.3 Comparing Similarity and Kriging Accuracies

Neither error rates nor first principles favor Similarity vs. Kriging on
regional (10% to 10® km) scales. Rather, both methods are successfully
generalizable and appropriate for subduction zone research. While some
segments do show large discrepancies between Similarity and Kriging
error rates (e.g. Scotia), low error rates do not necessarily imply more
accurate predictions. For Scotia, few observations naturally lead to over-
fitting and low error rates, but choosing different Kriging parameters
and/or highly localizing Kriging can also unintentionally overfit Ther-
moGlobe data and compromise regional interpolation accuracy. At 1.3
times greater error rates than Similarity on average, however, Kriging
error rates do not suggest overfitting is prevalent (Tables 3.1 and B.1).
Differences in error rates notwithstanding, Similarity has a distinct
advantage compared to Kriging when applied to regions with relatively

low observational density and/or highly-irregular spatial coverage. For
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example, Similarity predictions appear to be remarkably consistent with
known tectonic features even in cases with few observations (e.g. Scotia
and New Britain Solomon, Figures 3.6 & B.24). Integrating geologic prox-
ies is therefore preferred when limited observations preclude practically

useful Kriging interpolations.

3.5.4 Layered Interpolation Approach

Similarity and Kriging interpolations are distinguishable by eye at the
regional scale (e.g. compare Figures 3.3, 3.5, and 3.6 with the remain-
ing segments in Appendices B.4 & B.5). The same unique properties
of Similarity and Kriging methods that make them quickly discernible
by eye can be independently leveraged. For example, because Similar-
ity is inherently agnostic to the spatial configuration of observations
(Goutorbe et al., 2011), accurate interpolations with well-defined plate
boundaries are still possible for regions with relatively few observations
(e.g. Scotia and New Britain Solomon, Figures 3.6 & B.24). Since surface
heat flow observations near subduction zone segments are commonly
sparse and irregularly spaced, spatial-independence from observations
is a desirable property to maintain during the interpolation process.
On the other hand, conserving the “ground-truth” is an equally de-

sirable property. Local ordinary Kriging conserves ground-truth by
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remaining agnostic to all other factors but the spatial configuration of
surface heat flow observations (see Appendix B.1). For example, Kriging
resolves tectonic features near Tonga New Zealand and Vanuatu that
are discordant with Similarity predictions, yet compatible with Ther-
moGlobe data (Figures B.27 & 3.4). Another example is the young Cocos
Plate near Central America where Similarity predicts relatively high heat
flow by proximity to two spreading centers and young oceanic plate age,
yet observations of anomalously low surface heat flow (e.g. Hutnak et
al., 2008) constrain Kriging predictions to low values. Such contrasting
predictions imply ThermoGlobe data violate one or more geologic proxy
data sets used by Similarity. In other words, Kriging will tend to highlight
anomalies (compared to Similarity) if they exist and have been observed.

In principle, carefully layering Similarity and Kriging methods may
combine their properties to produce more accurate regional interpola-
tions in the future. A layered approach simultaneously respects the First
(Krige, 1951) and Third Laws of Geography (Zhu et al., 2018) by integrat-
ing geologic and spatial information. Many methods may be applied
to combine Similarity and Kriging predictions. As a basic example: (1)
compare Similarity and Kriging layers to detect anomalies, (2) compute

weights proportional to the squared difference between Similarity and
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Kriging predictions to emphasized or subdue anomalies, (3) combine

Similarity and Kriging layers using a weighted average scheme.

3.6 Conclusions
This study evaluates regional patterns of surface heat flow near subduc-
tion zones by comparing Similarity and Kriging interpolations across
adjacent upper-plate sectors. Methodological differences between Simi-
larity and Kriging yield both similar and disparate predicted heat flow
distributions and profiles among subduction zones. Four key conclu-

sions arise from regional surface heat flow near active subduction zones:

1. Accurateregional interpolations of irregularly-spaced ThermoGlobe
data are key to understanding broad (segment-scale) variations in
lithospheric thermal structure near subduction zones.

2. Mixed upper-plate surface heat flow distributions and profiles im-
ply various degrees of regional continuity among subduction zones
in terms of their lithospheric thermal structure (contrary to expec-
tations from Kerswell et al., 2021), heat-transferring subsurface
dynamics, and/or observational density relative to the local spatial
variability of surface heat flow.

3. Future surface heat flow surveys can maximize Similarity and Krig-
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ing accuracies by carefully considering the existing spatial distribu-
tion of surface heat flow observations and their distribution within
geologic proxy parameter space.

. Layered interpolation approaches may produce more accurate
surface heat flow predictions by combining the independently-

advantageous properties of Similarity and Kriging methods.



CHAPTER 4:
COMPUTING RATES AND
DISTRIBUTIONS OF ROCK RECOVERY

IN SUBDUCTION ZONES

4.1 Abstract

Bodies of rock that are detached (recovered) from subducting oceanic
plates, and exhumed to Earth’s surface, become invaluable records of
the mechanical and chemical processing of rock along subduction in-
terfaces. Exposures of interface rocks with high-pressure HP mineral
assemblages provide insights into the nature of rock recovery, yet vari-
ous inconsistencies arise when directly comparing the rock record with
numerical simulations of subduction. Constraining recovery rates and
depths from the rock record presents a major challenge because small

sample sizes of HP rocks reduce statistical power. As an alternative ap-
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proach, this study implements a classification algorithm to identify rock
recovery in numerical simulations of oceanic-continental convergence.
Over one million markers are classified from 64 simulations representing
a large range of subduction zones. Recovery pressures (depths) correlate
strongly with convergence velocity and moderately with oceanic plate
age, while slab-top thermal gradients correlate strongly with oceanic
plate age and upper-plate thickness. Recovery rates strongly correlate
with upper-plate thickness, yet show no correlation with convergence
velocity or oceanic plate age. Likewise, pressure-temperature PT distri-
butions of recovered markers vary among numerical experiments and
generally show deviations from the rock record that cannot be explained
by petrologic uncertaineties alone. For example, a significant gap in
marker recovery is found near 2 GPa and 550 °C, coinciding with the
highest frequencies of exhumed HP rocks. Explanations for such a gap
in marker recovery include numerical modeling uncertainties, selec-
tive sampling of exhumed HP rocks, or natural geodynamic factors not

accounted for in numerical experiments.

4.2 Introduction
Maximum PT conditions have been estimated for hundreds of high-

pressure HP metamorphic rocks exhumed from subduction zones (Fig-
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ure 4.1, Agard et al., 2018; Hacker, 1996; Penniston-Dorland et al., 2015).
These samples represent fragments of oceanic crust, continental crust,
seafloor sediments, and upper mantle that have detached from subduct-
ing oceanic and continental lithospheres at various depths along the
interface between subducting and overriding tectonic plates (referred
to as “recovery” after Agard et al., 2018). This rock record is the only
tangible evidence of PT-strain fields, deep seismic cycling, and fluid flow
within Earth’s lithosphere during deformation and chemical processing
in subduction zones. Together with geophysical imaging (e.g., Bostock,
2013; Ferris et al., 2003; Hyndman & Peacock, 2003; Mann et al., 2022;
Naif et al., 2015; Rondenay et al., 2008; Syracuse & Abers, 2006), analysis
of surface heat flow data (e.g., Currie & Hyndman, 2006; Gao & Wang,
2014; Hyndman et al., 2005; Kohn et al., 2018; Morishige & Kuwatani,
2020; Wada & Wang, 2009), and forward numerical geodynamic model-
ing (e.g., Gerya et al., 2002, 2008; Gerya & Stockhert, 2006; Hacker et al.,
2003; Kerswell et al., 2021; McKenzie, 1969; Peacock, 1990, 1996; Sizova et
al., 2010; Syracuse et al., 2010; Yamato et al., 2007, 2008), investigation of
the rock record underpins contemporary understandings of subduction
geodynamics (e.g., Agard et al., 2009; Agard, 2021; Bebout, 2007).

However, it remains difficult to directly interpret the rock record in
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Figure 4.1: PT diagram showing distributions of PT estimates for exhumed HP meta-
morphic rock samples compiled in the pd15 (solid contours, Penniston-Dorland et al.,
2015) and agl8 (filled contours, Agard et al., 2018) datasets. Thin lines are thermal
gradients labeled in °C/km. Reaction boundaries for eclogitization of oceanic crust
and antigorite dehydration are from Ito & Kennedy (1971) and Schmidt & Poli (1998),
respectively. (insets) Probability distribution functions of pd15 (pink lines) and agl8
samples (black lines) showing broad bimodal and trimodal sample distributions with
respect to P (top left inset) and a kinked CDF (bottom inset) indicating that a substantial
proportion of rocks are recovered from P’s between 0.5-2.5 GPa with very few rocks
reaching maximum P’s above 3 GPa.
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terms of recovery rates and distributions along the subduction interface.
For example, compilations of PT estimates representing the global dis-
tribution of HP rocks exhumed during the Phanerozoic (the pd15 and
agl8 datasets, Agard et al., 2018; Penniston-Dorland et al., 2015) reveal
an abrupt decrease in relative sample abundance at P’s above 2.3-2.4
GPa (Figure 4.1 inset). For pd15 and agl8, a nearly-constant cumula-
tive distribution function (CDF) interrupted by a sharp change in slope
around 2.3-2.4 GPa implies relatively widespread recovery of subducting
material up to 2.3-2.4 GPa, but increasingly rare recovery at higher P
(Agard et al., 2018; Kerswell et al., 2021; Kohn et al., 2018; Monie & Agard,
2009; Plunder et al., 2015). On the one hand, evidence for common me-
chanical coupling depths near 2.3 GPa (Furukawa, 1993; Kerswell et al.,
2021; Wada & Wang, 2009) suggests an upper-limit to recovery depths
that is consistent with the scarcity of (ultra-)HP samples in the rock
record and invariant with respect to key thermo-kinematic parameters
(convergence velocity, subduction geometry, plate thickness; Figure
4.1). On the other hand, geophysical constraints on the depths of key
mechanical transitions likely to induce rock recovery (e.g., Abers et al.,
2020; Audet & Kim, 2016; Audet & Schaeffer, 2018; Morishige & Kuwatani,

2020) suggest high recovery rates should cluster around discrete depths,
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rather than widespread recovery along the subduction interface implied
by the pd15 and agl8 datasets.

Difficulties in relating complex polymetamorphic rocks from differ-
ent environments challenge the use of PT distributions of exhumed HP
rock samples as robust constraints on key subduction zone parame-
ters. Interpretations of rock recovery mechanisms, subduction interface
behavior, metamorphic reactions, seismic cycling, and subduction geo-
dynamics might vary depending on metamorphic terrane (local tectonic
environment), sampling strategy (random or targeted outcrops), sample
size (how many outcrops were observed and sampled in the field), and
analytical sample selection (investigating PTs and deformation histo-
ries for a subset of samples with a specific scientific question in mind).
Different compilations of PT estimates from natural samples can show
different distributions in terms of relative abundances (frequencies) of
samples across PT space, and thus imply a natural preference of rock
recovery (and/or exhumation) from different depths along the subduc-
tion interface. For example, Agard et al. (2018) noted that compilations
from Plunder et al. (2015) and Groppo et al. (2016) show less dispersion
(i.e., a more step-like CDF) than ag18 with tighter bimodal or trimodal

distributions clustering around inferred depths of important mechani-
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cal transitions along the subduction interface. That is, high-frequency
peaks (modes) in PT distributions of exhumed HP rocks are inferred to
coincide with the continental Moho at approximately 25-35 km and the
transition to mechanical plate coupling at approximately 80 km (Agard
et al., 2018; Monie & Agard, 2009; Plunder et al., 2015). Less attention
in the literature is paid to a smaller, yet significant, intermediate mode
at 55-60 km (Agard et al., 2009, 2018; Plunder et al., 2015), although it
is consistent with a high-frequency region of PT estimates in the pd15
dataset.

Differences in compiled PT datasets notwithstanding, key observa-
tions regarding rock recovery in subduction zones emerge from pd15

and agl8:

Pressure

Rock recovery is broadly and unequally distributed

Rock recovery is more frequent near 1 GPa and 2 GPa (bimodal)
64-66% of recovered rocks equilibrated between 1-2.5 GPa
5-19% of recovered rocks equilibrated above 2.5 GPa

Temperature

» 50-56% of recovered rocks equilibrated above 525 °C
» 32-34% of recovered rocks equilibrated between 350-525 °C

PT gradient

» 52-62% of recovered rocks record gradients between 5-10 °C/km
e 18-31% of recovered rocks record gradients between 10-15 °C/km
e 6-30% of recovered rocks record gradients above 15 °C/km
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These ranges in the relative abundances of exhumed HP rocks compiled
in different datasets raise important questions in subduction zone re-
search: are rocks recovered broadly and uniformly along the subduction
interface or discretely from certain depths? How do recovery rates and
distributions vary among diverse subduction zone settings and through
time?

Previous work comparing the rock record directly with numerical
models has generally produced ambiguous interpretations concerning re-
covery rates (the volumetric ratio of recovered:subducted material) and
PT distributions of recovery along the subduction interface—especially
with respect to P, or depth. For example, comparisons of different nu-
merical geodynamic codes with subsets of the rock record show variable
agreement in terms of overlapping PT paths and thermal gradients (e.g.,
Angiboust et al., 2012b; Burov et al., 2014; Holt & Condit, 2021; Penniston-
Dorland et al., 2015; Plunder et al., 2018; Roda et al., 2010, 2012, 2020;
Ruh et al., 2015; Yamato et al., 2007, 2008). Numerous factors potentially
contribute to inconsistent PT distributions and thermal gradients be-
tween exhumed HP rocks and numerical geodynamic models, including
initial setups for numerical experiments and ranges in thermo-kinematic

boundary conditions (i.e., subduction zone setting: oceanic plate age,
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convergence velocity, subduction dip angle, upper-plate thickness, and
heating sources; Kohn et al., 2018; Penniston-Dorland et al., 2015; Ruh
et al., 2015; van Keken et al., 2019), differential recovery rates from sub-
duction zones with favorable settings (Abers et al., 2017; van Keken et
al., 2018), and comparisons among suites of undifferentiated HP rocks
(e.g., grouping rocks recovered during subduction initiation with rocks
recovered during “steady-state” subduction, see Agard et al., 2018, 2020).
Compounding the ambiguity are arguments that material is sporadically
recovered during short-lived mechanical transitions (Agard et al., 2016)
and/or geodynamic changes (Monie & Agard, 2009)—implying exhumed
HP rocks are not random samples of the subduction interface during
steady-state subduction. Such ambiguities warrant further investiga-
tion into the general response of recovery rates and distributions to
broad ranges of subduction zone settings and various implementations
of subduction interface rheologies.

Fortunately, clues about the nature and PT limits of rock recovery are
provided by many extensively studied examples of exhumed subduction
interfaces (e.g., Agard et al., 2018; Angiboust et al., 2011, 2015; Cloos &
Shreve, 1988; Fisher et al., 2021; Ioannidi et al., 2020; Kitamura & Kimura,

2012; Kotowski & Behr, 2019; Locatelli et al., 2019; Monie & Agard, 2009;
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Okay, 1989; Platt, 1986; Plunder et al., 2013, 2015; Tewksbury-Christle et
al., 2021; Wakabayashi, 2015). However, these type localities represent an
unknown fraction of subducted material and differ significantly in terms
of their geometry (field relationships), composition (rock types), and
interpreted deformation histories (both detachment and exhumation).
It is also unclear to what extent agl8 and pd15 (and other compilations)
represent the full range of recovery conditions and/or represent scien-
tific sampling bias (e.g., undersampling low-grade rocks or oversampling
high-grade rocks from the same pristine exposures, Agard et al., 2018)
or other geodynamic biases (e.g., preferential exhumation, Abers et al.,
2017; van Keken et al., 2018). Thus, a primary challenge to inferring
recovery rates and distributions accurately from the rock record funda-
mentally stems from sparse nonrandom samples (typically less than a
few dozen PT estimates from any given exhumed terrane) compared to
the diversity of thermo-kinematic parameters characterizing subduc-
tion zones and dynamic petro-thermo-mechanical processes that might
trigger rock recovery along the subduction interface.

This study aims at addressing the sparsity and nonrandomness of
exhumed HP rock samples by tracing numerous (1,341,729) Lagrangian

markers from 64 numerical geodynamic simulations of oceanic-
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continental subduction (Kerswell et al., 2021). We first generate a PT
dataset from instantiations of a particular numerical geodynamic code
so large that it was insensitive to noise and outliers—thus representing
a statistically robust picture of recovery rates and PT distributions
of recovery in subduction zone models. From such a large dataset of
generated samples, we identify correlations among recovery rates, PT
distributions, and subduction zone settings (i.e., oceanic plate age, con-
vergence velocity, and upper-plate thickness) that test sensitivities and
indicate ranges of plausible conditions for reproducing the rock record.
In fact, numerical experiments predict surprisingly few recovered
samples corresponding with the PT region around 2 GPa and 550 °C—the
same PT region that has a relatively high-frequency of natural samples.
We then discuss implications for inconsistencies between frequencies
of generated samples and exhumed HP rocks, including insufficient
implementation of recovery mechanisms in numerical geodynamic
models (numerical bias), a potential overabundance of natural samples
collected from similar metamorphic grades around 2 GPa and 550 °C
(sampling bias), and preferential exhumation from a relatively narrow

range of PT conditions (geodynamic bias).
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4.3 Methods

This study presents a dataset of Lagrangian markers (described below)
from numerical experiments that simulated 64 oceanic-continental con-
vergent margins with thermo-kinematic boundary conditions (oceanic
plate age, convergence velocity, and upper-plate lithospheric thickness)
closely representing the range of presently active subduction zone set-
tings (Syracuse & Abers, 2006; Wada & Wang, 2009). Initial conditions
were modified from previous studies of active margins (Gorczyk et al.,
2007; Sizova et al., 2010) using the numerical geodynamic code I2VIS
(Gerya & Yuen, 2003), which models visco-plastic flow of geological
materials by solving conservative equations of mass, energy, and mo-
mentum on a fully-staggered finite difference grid with a marker-in-cell
technique (e.g., Gerya, 2019; Gerya & Yuen, 2003; Harlow & Welch, 1965).
Complete details about the initial setup, boundary conditions, and rheo-
logical model are presented in Kerswell et al. (2021). Complete details
about I2VIS and example code are presented in Gerya & Yuen (2003) and
Gerya (2019).

The following section summarizes the numerical modeling setup, then

defines Lagrangian markers (now referred to as markers) and briefly elab-
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orates on their usefulness in understanding flow of geological materials,
followed finally by a description of the marker classification algorithm.
A complete mathematical description of the classification algorithm is

presented in Appendix C.1.

4.3.1 Summary of the Numerical Modeling Setup

The numerical geodynamic models of Kerswell et al. (2021) used for gen-
erating the markers dataset in this study are 2000 km wide and 300 km
deep with nonuniform resolution that increases gradually from 5 x 1 km
at the boundaries (in the x- and z-directions, respectively) to 1 x 1 km
within a 600 km wide area surrounding the contact between the oceanic
plate and continental margin. The left and right boundaries are free-slip
and thermally insulating. “Sticky” air and water at the top boundary al-
low for a free topographical surface with a simple linear implementation
of sedimentation and erosion. The lower boundary is open to allow for
free subduction geometries during oceanic plate descent (Burg & Gerya,

2005).

Rheological Model

All rock types within the model domain are treated as visco-plastic mate-

rials by limiting diffusion and dislocation creep deformation mechanisms
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with a brittle (plastic) yield criterion. Contributions from dislocation and
diffusion creep are accounted for by computing a composite rheology
for ductile rocks, 7.s:
1 1 1
_|_

— (4.1)
Neff Ndiff  Tdisl

where n4¢ and ny, are effective viscosities for diffusion and dislocation
creep.

For the crust and serpentinized mantle, 7, and 74 are computed as:

1 L E+ PV
Ndiff = 2 Ao exp “RT
4.2)
1 n <(1—n)/n E+ PV
Ndisl = B} AY 5§1 / exXp {W}

where R is the gas constant, P is pressure, T is temperature in K, ¢;; =
\/gfj is the square root of the second invariant of the strain rate tensor,
o 18 an assumed diffusion-dislocation transition stress, and A, £, V
and n are the material constant, activation energy, activation volume,
and stress exponent, respectively (Table 4.1, Hilairet et al., 2007; Ranalli,

1995).



106

For the mantle, 74 and 74y are computed as (Karato & Wu, 1993):

I ) K E+ PV
s =g 476 5] e [P

E+ PV
P TaRT

(4.3)

1 — n . —-_n)/n
Ndisl = ) A7V GE(Ill /

where =5 x 1071 m is the Burgers vector, G = 8 x 10'° Pa is shear modulus,
h =1 x 1073 mis the assumed grain size, m = 2.5 is the grain size exponent,
and the other flow law parameters are given in Table 4.1. Viscosity is
limited in all numerical experiments from 7,,;, = 10'” Pa - s to 1,,,, = 10%
Pa - s.

An effective visco-plastic rheology is achieved by limiting 7., with a
brittle (plastic) yield criterion:

C+oP

Nepr < (4.4)

where ¢ is the internal friction coefficient, C' cohesive strength at P =0,

and ¢;; is the strain rate tensor (Table 4.1).



Table 4.1: Material properties used in numerical experiments

Material p H,0 Flow Law logipA E v n 1) Oerit ky ks ks H

kg/m?® wt.% kJ/mol J/MPa-mol MPa wW/m?
sediments 2600 5.0 wet quartzite -3.5 154.0 3.0 2.3 0.15 0.03 0.64 807 4e-06 2.000
felsic crust 2700 wet quartzite  -3.5 154.0 3.0 2.3 045 0.03 0.64 807 4e-06 1.000
basalt 3000 5.0 plagan75 -3.5  238.0 8.0 3.2 045 0.03 1.18 474 4e-06 0.250
gabbro 3000 plag an75 -3.5  238.0 8.0 3.2 045 0.03 118 474 4e-06 0.250
mantle dry 3300 dry olivine 44  540.0 20.0 3.5 045 0.30 0.73 1293 4e-06 0.022
mantle hydrated 3300 0.5 wetolivine 3.3 430.0 10.0 3.0 045 0.24 0.73 1293 4e-06 0.022
serpentine 3200 2.0 serpentine 3.3 8.9 3.2 3.8 0.15 3.00 0.73 1293 4e-06 0.022

key: A: material constant, F, V: activation energy and volume, n: power law exponent, ¢: internal friction angle, o.;: critical
stress, ki-ks: thermal conductivity constants, H: heat production

constants: C,: heat capacity = 1 [kJ/kg], a: expansivity = 2x107° [1/K], 8: compressibility = 0.045 [1/MPa]

thermal conductivity: k [W/mK] = (k; + %) x exp(ks - P) with P in [MPa] and T in [K]

references: Turcotte & Schubert (2002), Ranalli (1995), Hilairet et al. (2007), Karato & Wu (1993)

LOT
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Metamorphic (De)Hydration Reactions

Within the model domain, free water particles are generated and con-
sumed by empirically-derived (de)hydration reactions and migrate with
relative velocities defined by local deviatoric (non-lithostatic) pressure
gradients (Faccenda et al., 2009). In the subducting lithosphere, gradual
eclogitization of oceanic crust is computed as a linear function of litho-
static pressure. This effectively simulates continuous influx of water
to the upper-plate mantle beginning with compaction and release of
connate water at shallow depths, followed by a sequence of reactions
consuming major hydrous phases (chlorite, lawsonite, zoisite, chloritoid,
talc, amphibole, and phengite) in different parts of the hydrated basaltic
crust (Schmidt & Poli, 1998; van Keken et al., 2011). Besides gradual
water release, eclogitization of the oceanic crust involves densification
at the garnet-in and plagioclase-out reaction boundaries defined by Ito
& Kennedy (1971).

In the upper-plate mantle wedge, formation of brucite and serpentine
from dry olivine is inferred to strongly regulate mechanical behavior
of the plate interface (Agard et al., 2016; Hyndman & Peacock, 2003;
Peacock & Hyndman, 1999). Because brucite breaks down at much lower

temperatures than serpentine (e.g., Bowen & Tuttle, 1949; Schmidt & Poli,
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1998), serpentine (de)stabilization is arguably more responsible for regu-
lating interface rheology deep in subduction zones. Thus, Kerswell et al.
(2021) chose to explicitly model serpentine (de)hydration in the upper
mantle, which effectively induces a mechanical (de)coupling transition
at the antigorite < olivine + orthopyroxene + H,O reaction boundary defined
by Schmidt & Poli (1998). All such (de)hydration reactions tacitly assume

thermodynamic equilibrium.

4.3.2 Lagrangian Markers

Markers are mathematical objects representing discrete parcels of ma-
terial flowing in a continuum (Harlow, 1962, 1964). Tracing markers
(saving marker information at each timestep) advances the investigation
of subduction dynamics in the following two ways.

First, modeling subduction requires solving equations of mass, mo-
tion, and heat transport in a partly layered, partly heterogeneous, high-
strain region known as the plate interface, subduction interface, or sub-
duction channel (Gerya et al., 2002). Current conceptual models regard
the subduction interface as a visco-plastic continuum with complex
geometry and structure, sharp thermal, chemical, and strain gradients,
strong advection, and abundant fluid flow (Agard et al., 2016, 2018; Be-

bout, 2007; Bebout & Barton, 2002; Cloos & Shreve, 1988; Gerya & Yuen,
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2003; Shreve & Cloos, 1986; Stockhert, 2002; Tewksbury-Christle et al.,
2021). Finite-difference numerical approaches do not perform well with
strong local gradients, and interpolating and updating T, strain, and
chemical fields with markers greatly improves accuracy and stability
of numerical solutions (Gerya, 2019; Gerya & Yuen, 2003; Moresi et al.,
2003).

Second, tracing a marker closely proxies for tracing a rock’s PT-time
history. Strictly speaking, deviations between calculated PT-time histo-
ries of markers and rocks are possible because the numerical geodynamic
simulations assume: (1) markers move in an incompressible continuum
(Batchelor, 1953; Boussinesq, 1897), (2) material properties are governed
by a simplified petrologic model describing eclogitization of oceanic
crust (Ito & Kennedy, 1971) and (de)hydration of upper mantle (antigorite
& olivine+orthopyrorene+ H,O, Schmidt & Poli, 1998), and (3) marker stress
and strain are related by a highly non-linear rheological model derived
from empirical flow laws (Hilairet et al., 2007; Karato & Wu, 1993; Ranalli,
1995; Turcotte & Schubert, 2002). For example, if rocks within a sub-
duction interface shear zone were highly compressible or could sustain
large deviatoric stresses, P’s and T’s might be different from markers.

The rheological model implemented in the numerical simulations of
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Kerswell et al. (2021), embodied by assumptions 2 and 3, exert partic-
ularly strong control on subduction interface strength, and thus the
probability and style of detachment. For example, all numerical simula-
tions from Kerswell et al. (2021) developed stable subduction channels
(tectonic-mélanges, e.g., Gerya et al., 2002) instead of discrete shear
zones that detach large coherent slices of oceanic lithosphere (e.g., Ruh
et al., 2015) primarily due to the choice of rheological model and spe-
cific implementation of metamorphic (de)hydration reactions. A major
uncertainty in the markers dataset presented below stems from an im-
plicit assumption that the plate interface behaves like a distributed shear
zone composed of hydrated ultramafic material mixed with fragments
of dehydrating oceanic crust and seafloor sediments (i.e., a tectonic
melange). Field evidence for tectonic slicing of HP rocks does not nec-
essarily support this view of plate interface behavior (e.g., Agard et al.,
2018; Angiboust et al., 2009, 2012a, 2014b; Gilio et al., 2020; Locatelli
et al., 2018; Monie & Agard, 2009; Poulaki et al., 2023), while other well-
studied mélange-like structures do (e.g., Festa et al., 2019; Harvey et
al., 2021; Hsu, 1968; Kusky et al., 2013; Penniston-Dorland & Harvey,
2023; Platt, 2015; Wakabayashi & Dilek, 2011), and still other localities

exhibit field relations that are more ambiguous (e.g., Bonnet et al., 2018;
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Cisneros et al., 2022; Kotowski et al., 2022; Kusky et al., 2013; Platt,
1975). Such a variety of different structures interpreted as former plate
interfaces highlight the fact that large uncertainties exist in the rock
record—in addition to large experimental and theoretical uncertainties—
all of which challenge our understanding of plate interface mechanics
in subduction zones. Large uncertainties notwithstanding, our objective
was to assess the rates and PT distribution of HP rock recovery during
steady state subduction in a distributed shear zone, not necessarily dur-
ing short-lived events that might induce tectonic slicing of subducting
lithosphere. Therefore, insofar as the plate interface approximates a
mélange-like channel of incompressible visco-plastic fluid (under the
assumptions above, Gerya, 2019; Gerya & Yuen, 2003; Kerswell et al.,
2021), first-order comparisons between marker PT distributions and the

rock record may be made.

4.3.3 Marker Classification

For each numerical experiment, 20,986 markers were initially selected
from within a 760 km-long and 8 km-deep section of oceanic crust and
seafloor sediments at ¢ = 0 Ma. Tracing proceeded for 115 timesteps
(between 9.3-54.7 Ma depending on convergence velocity), which was

sufficient for markers to be potentially subducted very deeply (up to 300
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km) from their initial positions. To a first-order, however, only markers
that detached from the subducting oceanic plate (i.e., not subducted)
were relevant for comparison with PT estimates of exhumed HP rocks.
The main challenge, therefore, was to first develop a method for de-
termining which markers among 20,986 detached from the subducting
plate without knowing their fate a priori. Moreover, the method needed
to be generalizable to a large range of numerical experiments.
Classifying unlabelled markers as either “recovered” or “not recov-
ered” based solely on their undifferentiated traced histories defines
an unsupervised classification problem (Barlow, 1989). Many methods
can be applied to solve the unsupervised classification problem, yet
this study implemented a Gaussian mixture model (Reynolds, 2009)—a
type of “soft” clustering algorithm used extensively for pattern recog-
nition, anomaly detection, and estimating complex probability distri-
bution functions (e.g., Banfield & Raftery, 1993; Celeux & Govaert, 1995;
Figueiredo & Jain, 2002; Fraley & Raftery, 2002; Vermeesch, 2018). “Hard”
classification is possible by directly applying simple rules to markers
without clustering (e.g., Roda et al., 2012). However, “hard” methods are
less generalizable than “soft” approaches like Gaussian mixture models,

which can be implemented to study many possible features in numerical
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simulations with Lagrangian reference frames—not just recovery of sub-
ducted material. In this case, a Gaussian mixture model organized mark-
ers into groups (clusters) by fitting & = 14 bivariate Gaussian ellipsoids
to the distribution of markers in PT space. “Fitting” refers to adjusting
parameters (centroids and covariance matrices) of all £ Gaussian ellip-
soids until the ellipsoids and data achieved maximum likelihood (see
Appendix C.1 for a complete mathematical description). Finally, marker
clusters with centroids located within certain bounds were classified as
“recovered”. The entire classification algorithm can be summarized as

follows:

Marker classification algorithm

Select markers within a 760 km x 8 km section of oceanic crust

Trace markers for 115 timesteps

Identify maximum marker PT conditions (at [maxP, T] or “maxP”)
Apply Gaussian mixture modeling to maximum marker PT conditions
Check for cluster centroids within the bounds:

e >3°C/km AND
e« <1300°C AND
e <120 km (3.4 GPa)

5. Classify marker clusters found in step 4 as “recovered”
6. Classify all other markers as “not recovered”

=GN = O

Note that marker PTs used for clustering were assessed before markers
melted. Melting was implemented in the numerical experiments of Ker-

swell et al. (2021) but was irrelevant for marker clustering. Marker PTs
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used for clustering were also assessed before the accretionary wedge toe
collided with the high-viscosity convergence region positioned at 500
km from the left boundary to avoid spurious PT conditions associated
with sudden isothermal burial. We also tested different prograde PT
path positions in step 2 by determining maximum marker T’s (P, maxT
or “maxT”) and maximum P’s (maxP, T or “maxP”) independently. Ap-
plying maxP vs. maxT conditions to the classifier resulted in distinct
PT distributions of recovered markers and correlations with subduction
zone settings. However, compilations of exhumed HP rocks emphasize
maxP, not maxT, (Penniston-Dorland et al., 2015), and thus empirical PT
estimates are best compared with maxP conditions. Also, many PT paths
for exhumed HP rocks have “hairpin” or isothermal decompression ret-
rograde PT paths without significant heating during exhumation (Agard
et al., 2009). Figures 4.2 and 4.3 illustrate marker classification for 1 of
64 numerical experiments. All other experiments are presented in the
Supporting Information.

When evaluating the comparisons between markers and rocks made
below, it is important that detached markers classified as “recovered”
were not exhumed to the surface within the modeling domain. In fact,

very few markers exhumed to any significant degree after detachment
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from the subducting plate. In natural systems, diverse processes drive
exhumation of subduction zone rocks, including later tectonic events
(Agard et al., 2009). However, our goal was to compare only the maximum
metamorphic conditions of markers and rocks along their prograde paths
during steady-state subduction. Because most rocks in pd15 and ag18
are inferred to have relatively tight closed-loop PT paths (Agard et al.,
2018; Penniston-Dorland et al., 2015), it is reasonable to assume that their
maximum PT estimates closely correspond to the point of detachment
(recovery) along the plate interface. Therefore, our analysis compared
maximum PT estimates for exhumed rocks with PT conditions during

marker detachment from the subducting plate.

4.3.4 Recovery Modes

To better quantify how rock recovery can vary among different subduc-
tion zone settings, marker recovery modes (high-frequency peaks) were
determined with respect to absolute PT and PT gradients. The highest-
frequency peak (model) shows where the greatest abundance of markers
are recovered. The deepest, or warmest, frequency peak (mode2) shows
where the most deeply subducted markers (or markers with the highest
PT gradients) are recovered. It is crucial to understand that mode2 rep-

resents a very small number of recovered markers compared to model
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in all cases (typically < 1-10%). In other words, changes in the positions
of model and mode2 reflect variations in recovery conditions (P, T, and
PT gradients) for “normal” recovery and “extreme cases”, respectively.
Note that correlations are not presented here with respect to the ther-
mal parameter ® (® = oceanic plate age - convergence velocity), unlike
other studies (e.g., England et al., 2004; Wada & Wang, 2009). The ra-
tionale is three-fold: (1) the aim was to understand how oceanic plate
age and convergence velocity affect marker recovery independently, (2)
sample sizes of recovered markers were larger when grouped by oceanic
plate age and convergence velocity (n = 335,788) compared to grouping
by ® (n = 83,947; implying they do not correlate well with @), and (3)
combining oceanic plate age and convergence velocity can draw un-
necessarily ambiguous associations with other geodynamic features of
subduction zones (e.g., ® vs. H from England et al., 2004; Wada & Wang,

2009).
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Figure 4.2: Example of marker classification for model cda62. (a) PT diagram showing marker clusters as assigned
by Gaussian mixture modeling (GMM; colored PT paths). Boxplots showing depth and thermal gradient distributions
of marker clusters assigned by GMM. Markers belonging to clusters with centroids (means) positioned at < 120 km
(top inset) and > 3 °C/km (bottom inset) are classified as recovered. All others are classified as not recovered. (b) PT
diagram showing marker classification results (colored PT paths) and various marker positions along their PT paths
(black, white, and pink points). Thin lines are thermal gradients labeled in °C/km. Only a random subset of markers
is shown. (insets) Probability distribution functions showing the distribution of T’s (top inset) and P’s (bottom inset)
for recovered markers at maxP (black lines) and maxT (white lines) conditions. In this experiment, a significant
number of markers have different peak metamorphic conditions between their maxT and maxP positions.
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Figure 4.3: Summary of marker re